Skip to content

kthohr/BMR

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BMR   Build Status Build status

Bayesian Macroeconometrics in R (BMR) is an R interface to BM++, a templated C++ library for estimating Bayesian Vector Autoregression (BVAR) and Dynamic Stochastic General Equilibrium (DSGE) models.

Features:

  • BVAR models with flexible prior specification, including: the Minnesota prior; normal-inverse-Wishart prior; and Matias Villani's steady-state prior.
  • BVARs with time-varying parameters.
  • Solve DSGE models using the method of undetermined coefficients (Uhlig's method) and Sims' QZ method.
  • Estimate DSGE and DSGE-VAR models.

Installation

The simplest installation method is via the devtools package.

install.packages("devtools")
library(devtools)
install_github("kthohr/BMR")

Note that BMR requires compilation, so approproate development tools are necessary to install the package.

  • Windows users should get Rtools.
  • Mac uses should check here.

Documentation

See http://www.kthohr.com/bmr for documentation and replication files.

BVAR Example

Estimate a BVAR model with Minnesota prior:

library("BMR")

data(BMRMCData)

# create bvarm object
bvar_obj <- new(bvarm) 

# add data; add a constant; and set lags (p) = 2
bvar_obj$build(bvarMCdata,TRUE,2)

# prior of 0.5 on own-first-lags, and take default values for the hyperparameters
bvar_obj$prior(c(0.5,0.5))

# draw from the posterior distribution
bvar_obj$gibbs(10000)

# posterior mean and variance
bvar_obj$alpha_pt_mean
bvar_obj$alpha_pt_var

# plot IRFs
IRF(bvar_obj,20,save=FALSE)

DSGE Example

Solve a three-equation New-Keynesian model:

#
# Solve the NK model with gensys
#

rm(list=ls())
library(BMR)

#

alpha    <- 0.33
vartheta <- 6
beta     <- 0.99
theta    <- 0.6667

eta    <- 1               
phi    <- 1                  
phi_pi <- 1.5             
phi_y  <- 0.5/4
rho_a  <- 0.90
rho_v  <- 0.5

BigTheta <- (1-alpha)/(1-alpha+alpha*vartheta)
kappa    <- (((1-theta)*(1-beta*theta))/(theta))*BigTheta*((1/eta)+((phi+alpha)/(1-alpha)))
psi      <- (eta*(1+phi))/(1-alpha+eta*(phi + alpha))

sigma_T <- 1
sigma_M <- 0.25

G0_47 <- (1/eta)*psi*(rho_a - 1)

#Order:                 yg,       y,      pi,      rn,       i,       n,       a,       v,  yg_t+1,  pi_t+1
Gamma0 <- rbind(c(      -1,       0,       0,     eta,  -eta/4,       0,       0,       0,       1,   eta/4),
                c(   kappa,       0,    -1/4,       0,       0,       0,       0,       0,       0,  beta/4),
                c(   phi_y,       0,phi_pi/4,       0,    -1/4,       0,       0,       1,       0,       0),
                c(       0,       0,       0,      -1,       0,       0,   G0_47,       0,       0,       0),
                c(       0,      -1,       0,       0,       0, 1-alpha,       1,       0,       0,       0),
                c(      -1,       1,       0,       0,       0,       0,    -psi,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       1,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       1,       0,       0),
                c(       1,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       1,       0,       0,       0,       0,       0,       0,       0))

Gamma1 <- rbind(c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,   rho_a,       0,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,   rho_v,       0,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       1,       0),
                c(       0,       0,       0,       0,       0,       0,       0,       0,       0,       1))

#

C <- matrix(0,10,1)

Psi <- matrix(0,10,2)
Psi[7,1] <- 1
Psi[8,2] <- 1

Pi <- matrix(0,10,2)
Pi[9,1] <- 1
Pi[10,2] <- 1

#

Sigma <- rbind(c(sigma_T^2,         0),  
               c(        0, sigma_M^2))

#
# build the model and solve it

dsge_obj <- new(gensys)

dsge_obj$build(Gamma0,Gamma1,C,Psi,Pi)
dsge_obj$solve()

# Y_t = G *  Y_{t-1} + Impact * e_t

dsge_obj$G_sol
dsge_obj$impact_sol

# set shocks (Sigma); then plot IRFs and simulate some data

dsge_obj$shocks_cov = Sigma

var_names <- c("Output Gap","Output","Inflation","Natural Int",
               "Nominal Int","Labour Supply","Technology","MonetaryPolicy")

dsge_irf <- IRF(dsge_obj,12,var_names=var_names)
dsge_sim <- dsge_obj$simulate(800,200)

Author

Keith O'Hara

License

GPL (>= 2)