Skip to content

Commit

Permalink
chore(topology/urysohns_lemma): use bundled C(X, ℝ) (#8402)
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Jul 23, 2021
1 parent 88de9b5 commit 0dd81c1
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 5 deletions.
5 changes: 2 additions & 3 deletions src/measure_theory/continuous_map_dense.lean
Expand Up @@ -119,7 +119,7 @@ begin
abel },
-- Apply Urysohn's lemma to get a continuous approximation to the characteristic function of
-- the set `s`
obtain ⟨g, hg_cont, hgu, hgF, hg_range⟩ :=
obtain ⟨g, hgu, hgF, hg_range⟩ :=
exists_continuous_zero_one_of_closed u_open.is_closed_compl F_closed this,
-- Multiply this by `c` to get a continuous approximation to the function `f`; the key point is
-- that this is pointwise bounded by the indicator of the set `u \ F`
Expand All @@ -145,8 +145,7 @@ begin
rw snorm_indicator_const (u_open.sdiff F_closed).measurable_set hp₀.ne' hp,
push_cast [← ennreal.coe_rpow_of_nonneg _ hp₀'],
exact ennreal.mul_left_mono (ennreal.rpow_left_monotone_of_nonneg hp₀' h_μ_sdiff) },
have gc_cont : continuous (λ x, g x • c) :=
continuous_smul.comp (hg_cont.prod_mk continuous_const),
have gc_cont : continuous (λ x, g x • c) := g.continuous.smul continuous_const,
have gc_mem_ℒp : mem_ℒp (λ x, g x • c) p μ,
{ have : mem_ℒp ((λ x, g x • c) - s.indicator (λ x, c)) p μ :=
⟨(gc_cont.ae_measurable μ).sub (measurable_const.indicator hs).ae_measurable,
Expand Down
5 changes: 3 additions & 2 deletions src/topology/urysohns_lemma.lean
Expand Up @@ -5,6 +5,7 @@ Authors: Yury G. Kudryashov
-/
import analysis.normed_space.add_torsor
import linear_algebra.affine_space.ordered
import topology.continuous_function.basic

/-!
# Urysohn's lemma
Expand Down Expand Up @@ -287,10 +288,10 @@ then there exists a continuous function `f : X → ℝ` such that
-/
lemma exists_continuous_zero_one_of_closed {s t : set X} (hs : is_closed s) (ht : is_closed t)
(hd : disjoint s t) :
∃ f : X → ℝ, continuous f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1 :=
∃ f : C(X, ℝ), eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1 :=
begin
-- The actual proof is in the code above. Here we just repack it into the expected format.
set c : urysohns.CU X := ⟨s, tᶜ, hs, ht.is_open_compl, λ _, disjoint_left.1 hd⟩,
exact ⟨c.lim, c.continuous_lim, c.lim_of_mem_C,
exact ⟨c.lim, c.continuous_lim, c.lim_of_mem_C,
λ x hx, c.lim_of_nmem_U _ (λ h, h hx), c.lim_mem_Icc⟩
end

0 comments on commit 0dd81c1

Please sign in to comment.