|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Reid Barton. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Reid Barton |
| 5 | +-/ |
| 6 | + |
| 7 | +import roadmap.todo |
| 8 | +import topology.subset_properties |
| 9 | +import topology.separation |
| 10 | +import topology.metric_space.basic |
| 11 | + |
| 12 | +/-! |
| 13 | +A formal roadmap for basic properties of paracompact spaces. |
| 14 | +
|
| 15 | +It contains the statements that compact spaces and metric spaces are paracompact, |
| 16 | +and that paracompact t2 spaces are normal, as well as partially formalised proofs. |
| 17 | +
|
| 18 | +Any contributor should feel welcome to contribute complete proofs. When this happens, |
| 19 | +we should also consider preserving the current file as an exemplar of a formal roadmap. |
| 20 | +-/ |
| 21 | + |
| 22 | +open set filter |
| 23 | + |
| 24 | +universe u |
| 25 | + |
| 26 | +class paracompact_space (X : Type u) [topological_space X] : Prop := |
| 27 | +(locally_finite_refinement : |
| 28 | + ∀ {α : Type u} (u : α → set X) (uo : ∀ a, is_open (u a)) (uc : Union u = univ), |
| 29 | + ∃ {β : Type u} (v : β → set X) (vo : ∀ b, is_open (v b)) (vc : Union v = univ), |
| 30 | + locally_finite v ∧ ∀ b, ∃ a, v b ⊆ u a) |
| 31 | + |
| 32 | +/-- Any open cover of a paracompact space has a locally finite *precise* refinement, that is, |
| 33 | + one indexed on the same type with each open set contained in the corresponding original one. -/ |
| 34 | +lemma paracompact_space.precise_refinement {X : Type u} [topological_space X] [paracompact_space X] |
| 35 | + {α : Type u} (u : α → set X) (uo : ∀ a, is_open (u a)) (uc : Union u = univ) : |
| 36 | + ∃ v : α → set X, (∀ a, is_open (v a)) ∧ Union v = univ ∧ locally_finite v ∧ (∀ a, v a ⊆ u a) := |
| 37 | +begin |
| 38 | + obtain ⟨β, w, wo, wc, lfw, wr⟩ := paracompact_space.locally_finite_refinement u uo uc, |
| 39 | + choose f hf using wr, |
| 40 | + refine ⟨λ a, ⋃₀ {s | ∃ b, f b = a ∧ s = w b}, λ a, _, _, _, λ a, _⟩, |
| 41 | + { apply is_open_sUnion _, |
| 42 | + rintros t ⟨b, rfl, rfl⟩, |
| 43 | + apply wo }, |
| 44 | + { todo }, |
| 45 | + { todo }, |
| 46 | + { apply sUnion_subset, |
| 47 | + rintros t ⟨b, rfl, rfl⟩, |
| 48 | + apply hf } |
| 49 | +end |
| 50 | + |
| 51 | +lemma paracompact_of_compact {X : Type u} [topological_space X] [compact_space X] : |
| 52 | + paracompact_space X := |
| 53 | +begin |
| 54 | + refine ⟨λ α u uo uc, _⟩, |
| 55 | + obtain ⟨s, _, sf, sc⟩ := |
| 56 | + compact_univ.elim_finite_subcover_image (λ a _, uo a) (by rwa [univ_subset_iff, bUnion_univ]), |
| 57 | + refine ⟨s, λ b, u b.val, λ b, uo b.val, _, _, λ b, ⟨b.val, subset.refl _⟩⟩, |
| 58 | + { todo }, |
| 59 | + { intro x, |
| 60 | + refine ⟨univ, univ_mem_sets, _⟩, |
| 61 | + todo }, |
| 62 | +end |
| 63 | + |
| 64 | +lemma normal_of_paracompact_t2 {X : Type u} [topological_space X] [t2_space X] |
| 65 | + [paracompact_space X] : normal_space X := |
| 66 | +todo |
| 67 | +/- |
| 68 | +Similar to the proof of `generalized_tube_lemma`, but different enough not to merge them. |
| 69 | +Lemma: if `s : set X` is closed and can be separated from any point by open sets, |
| 70 | +then `s` can also be separated from any closed set by open sets. Apply twice. |
| 71 | +
|
| 72 | +See |
| 73 | +* Bourbaki, General Topology, Chapter IX, §4.4 |
| 74 | +* https://ncatlab.org/nlab/show/paracompact+Hausdorff+spaces+are+normal |
| 75 | +-/ |
| 76 | + |
| 77 | +lemma paracompact_of_metric {X : Type u} [metric_space X] : paracompact_space X := |
| 78 | +todo |
| 79 | +/- |
| 80 | +See Mary Ellen Rudin, A new proof that metric spaces are paracompact. |
| 81 | +https://www.ams.org/journals/proc/1969-020-02/S0002-9939-1969-0236876-3/S0002-9939-1969-0236876-3.pdf |
| 82 | +-/ |
0 commit comments