Skip to content

Commit

Permalink
refactor(topology/algebra): use dot notation in tendsto.add and frien…
Browse files Browse the repository at this point in the history
…ds (#1765)
  • Loading branch information
sgouezel authored and mergify[bot] committed Dec 2, 2019
1 parent 87929bf commit 3913d30
Show file tree
Hide file tree
Showing 18 changed files with 39 additions and 42 deletions.
6 changes: 3 additions & 3 deletions src/analysis/calculus/fderiv.lean
Expand Up @@ -160,7 +160,7 @@ begin
{ conv in (nhds_within x s) { rw ← add_zero x },
rw [← tendsto_iff_comap, nhds_within, tendsto_inf],
split,
{ apply tendsto.add tendsto_const_nhds (tangent_cone_at.lim_zero clim cdlim) },
{ apply tendsto_const_nhds.add (tangent_cone_at.lim_zero clim cdlim) },
{ rwa tendsto_principal } },
have : is_o (λ y, f y - f x - f' (y - x)) (λ y, y - x) (nhds_within x s) := h,
have : is_o (λ n:ℕ, f (x + d n) - f x - f' ((x + d n) - x)) (λ n, (x + d n) - x)
Expand All @@ -179,7 +179,7 @@ begin
tendsto.comp f'.cont.continuous_at cdlim,
have L3 : tendsto (λn:ℕ, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
at_top (𝓝 (0 + f' v)) :=
tendsto.add L1 L2,
L1.add L2,
have : (λn:ℕ, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
= (λn: ℕ, c n • (f (x + d n) - f x)),
by { ext n, simp [smul_add] },
Expand Down Expand Up @@ -888,7 +888,7 @@ theorem has_fderiv_at_filter.tendsto_nhds
begin
have : tendsto (λ x', f x' - f x) L (𝓝 0),
{ refine h.is_O_sub.trans_tendsto (tendsto_le_left hL _),
rw ← sub_self x, exact tendsto.sub tendsto_id tendsto_const_nhds },
rw ← sub_self x, exact tendsto_id.sub tendsto_const_nhds },
have := tendsto.add this tendsto_const_nhds,
rw zero_add (f x) at this,
exact this.congr (by simp)
Expand Down
5 changes: 2 additions & 3 deletions src/analysis/calculus/tangent_cone.lean
Expand Up @@ -99,8 +99,7 @@ begin
tendsto_inverse_at_top_nhds_0.comp hc,
have B : tendsto (λn, ∥c n • d n∥) at_top (𝓝 ∥y∥) :=
(continuous_norm.tendsto _).comp hd,
have C : tendsto (λn, ∥c n∥⁻¹ * ∥c n • d n∥) at_top (𝓝 (0 * ∥y∥)) :=
tendsto.mul A B,
have C : tendsto (λn, ∥c n∥⁻¹ * ∥c n • d n∥) at_top (𝓝 (0 * ∥y∥)) := A.mul B,
rw zero_mul at C,
have : {n | ∥c n∥⁻¹ * ∥c n • d n∥ = ∥d n∥} ∈ (@at_top ℕ _),
{ have : {n | 1 ≤ ∥c n∥} ∈ (@at_top ℕ _) :=
Expand All @@ -124,7 +123,7 @@ begin
refine ⟨c, d, _, ctop, clim⟩,
have : {n : ℕ | x + d n ∈ t} ∈ at_top,
{ have : tendsto (λn, x + d n) at_top (𝓝 (x + 0)) :=
tendsto.add tendsto_const_nhds (tangent_cone_at.lim_zero ctop clim),
tendsto_const_nhds.add (tangent_cone_at.lim_zero ctop clim),
rw add_zero at this,
exact mem_map.1 (this ht) },
exact inter_mem_sets ds this
Expand Down
6 changes: 3 additions & 3 deletions src/analysis/complex/exponential.lean
Expand Up @@ -344,10 +344,10 @@ begin
have H1 : tendsto f₁ (𝓝 ⟨1, zero_lt_one⟩) (𝓝 (log (x.1*1))),
have : f₁ = λ h:{h:ℝ // 0 < h}, log x.1 + log h.1,
ext h, rw ← log_mul x.2 h.2,
simp only [this, log_mul x.2 zero_lt_one, log_one], exact
tendsto.add tendsto_const_nhds (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
simp only [this, log_mul x.2 zero_lt_one, log_one],
exact tendsto_const_nhds.add (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
have H2 : tendsto f₂ (𝓝 x) (𝓝 ⟨x.1⁻¹ * x.1, mul_pos (inv_pos x.2) x.2⟩),
rw tendsto_subtype_rng, exact tendsto.mul tendsto_const_nhds continuous_at_subtype_val,
rw tendsto_subtype_rng, exact tendsto_const_nhds.mul continuous_at_subtype_val,
suffices h : tendsto (f₁ ∘ f₂) (𝓝 x) (𝓝 (log x.1)),
begin
convert h, ext y,
Expand Down
2 changes: 1 addition & 1 deletion src/analysis/normed_space/banach.lean
Expand Up @@ -158,7 +158,7 @@ begin
tendsto.comp (hf.continuous.tendsto _) this,
simp only [fsumeq] at L₁,
have L₂ : tendsto (λn, y - (h^[n]) y) at_top (𝓝 (y - 0)),
{ refine tendsto.sub tendsto_const_nhds _,
{ refine tendsto_const_nhds.sub _,
rw tendsto_iff_norm_tendsto_zero,
simp only [sub_zero],
refine squeeze_zero (λ_, norm_nonneg _) hnle _,
Expand Down
6 changes: 3 additions & 3 deletions src/analysis/normed_space/basic.lean
Expand Up @@ -539,16 +539,16 @@ begin
have limf': tendsto (λ x, ∥f x - s∥) e (𝓝 0) := tendsto_iff_norm_tendsto_zero.1 limf,
have limg' : tendsto (λ x, ∥g x∥) e (𝓝 ∥b∥) := filter.tendsto.comp (continuous_iff_continuous_at.1 continuous_norm _) limg,

have lim1 := tendsto.mul limf' limg',
have lim1 := limf'.mul limg',
simp only [zero_mul, sub_eq_add_neg] at lim1,

have limg3 := tendsto_iff_norm_tendsto_zero.1 limg,

have lim2 := tendsto.mul (tendsto_const_nhds : tendsto _ _ (𝓝 ∥ s ∥)) limg3,
have lim2 := (tendsto_const_nhds : tendsto _ _ (𝓝 ∥ s ∥)).mul limg3,
simp only [sub_eq_add_neg, mul_zero] at lim2,

rw [show (0:ℝ) = 0 + 0, by simp],
exact tendsto.add lim1 lim2 }
exact lim1.add lim2 }
end

lemma tendsto_smul_const {g : γ → F} {e : filter γ} (s : α) {b : F} :
Expand Down
2 changes: 1 addition & 1 deletion src/analysis/normed_space/bounded_linear_maps.lean
Expand Up @@ -119,7 +119,7 @@ tendsto_iff_norm_tendsto_zero.2 $
calc ∥f e - f x∥ = ∥hf.mk' f (e - x)∥ : by rw (hf.mk' _).map_sub e x; refl
... ≤ M * ∥e - x∥ : hM (e - x))
(suffices (λ (e : E), M * ∥e - x∥) →_{x} (M * 0), by simpa,
tendsto.mul tendsto_const_nhds (lim_norm _))
tendsto_const_nhds.mul (lim_norm _))

lemma continuous (hf : is_bounded_linear_map 𝕜 f) : continuous f :=
continuous_iff_continuous_at.2 $ λ _, hf.tendsto _
Expand Down
10 changes: 5 additions & 5 deletions src/analysis/normed_space/real_inner_product.lean
Expand Up @@ -250,7 +250,7 @@ begin
have h : tendsto (λ n:ℕ, δ) at_top (𝓝 δ),
exact tendsto_const_nhds,
have h' : tendsto (λ n:ℕ, δ + 1 / (n + 1)) at_top (𝓝 δ),
convert tendsto.add h tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero],
convert h.add tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero],
exact tendsto_of_tendsto_of_tendsto_of_le_of_le h h'
(by { rw mem_at_top_sets, use 0, assume n hn, exact δ_le _ })
(by { rw mem_at_top_sets, use 0, assume n hn, exact le_of_lt (hw _) }),
Expand Down Expand Up @@ -316,15 +316,15 @@ begin
apply tendsto.comp,
{ convert continuous_sqrt.continuous_at, exact sqrt_zero.symm },
have eq₁ : tendsto (λ (n : ℕ), 8 * δ * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
convert tendsto.mul (@tendsto_const_nhds _ _ _ (8 * δ) _) tendsto_one_div_add_at_top_nhds_0_nat,
convert (@tendsto_const_nhds _ _ _ (8 * δ) _).mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero],
have : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
convert tendsto.mul (@tendsto_const_nhds _ _ _ (4:ℝ) _) tendsto_one_div_add_at_top_nhds_0_nat,
convert (@tendsto_const_nhds _ _ _ (4:ℝ) _).mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero],
have eq₂ : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1)) * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
convert tendsto.mul this tendsto_one_div_add_at_top_nhds_0_nat,
convert this.mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero],
convert tendsto.add eq₁ eq₂, simp only [add_zero],
convert eq₁.add eq₂, simp only [add_zero],
-- Step 3: By completeness of `K`, let `w : ℕ → K` converge to some `v : K`.
-- Prove that it satisfies all requirements.
rcases cauchy_seq_tendsto_of_is_complete h₁ (λ n, _) seq_is_cauchy with ⟨v, hv, w_tendsto⟩,
Expand Down
5 changes: 2 additions & 3 deletions src/analysis/specific_limits.lean
Expand Up @@ -138,7 +138,7 @@ lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) a
tendsto.comp tendsto_inverse_at_top_nhds_0 (tendsto_coe_nat_real_at_top_iff.2 tendsto_id)

lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) :=
by simpa only [mul_zero] using tendsto.mul tendsto_const_nhds tendsto_inverse_at_top_nhds_0_nat
by simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_at_top_nhds_0_nat

lemma tendsto_one_div_add_at_top_nhds_0_nat :
tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) :=
Expand All @@ -151,8 +151,7 @@ have r ≠ 1, from ne_of_lt h₂,
have r + -10,
by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption,
have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)),
from tendsto.mul
(tendsto.sub (tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂) tendsto_const_nhds) tendsto_const_nhds,
from ((tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂).sub tendsto_const_nhds).mul tendsto_const_nhds,
have (λ n, (range n).sum (λ i, r ^ i)) = (λ n, geom_series r n) := rfl,
(has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $
by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at *
Expand Down
4 changes: 2 additions & 2 deletions src/data/padics/hensel.lean
Expand Up @@ -302,7 +302,7 @@ private lemma newton_seq_dist_to_a : ∀ n : ℕ, 0 < n → ∥newton_seq n - a
private lemma bound' : tendsto (λ n : ℕ, ∥F.derivative.eval a∥ * T^(2^n)) at_top (𝓝 0) :=
begin
rw ←mul_zero (∥F.derivative.eval a∥),
exact tendsto.mul (tendsto_const_nhds)
exact tendsto_const_nhds.mul
(tendsto.comp
(tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
(tendsto_pow_at_top_at_top_of_gt_1_nat (by norm_num)))
Expand Down Expand Up @@ -364,7 +364,7 @@ tendsto.congr'
private lemma newton_seq_dist_tendsto' :
tendsto (λ n, ∥newton_cau_seq n - a∥) at_top (𝓝 ∥soln - a∥) :=
tendsto.comp (continuous_iff_continuous_at.1 continuous_norm _)
(tendsto.sub (tendsto_limit _) tendsto_const_nhds)
((tendsto_limit _).sub tendsto_const_nhds)


private lemma soln_dist_to_a : ∥soln - a∥ = ∥F.eval a∥ / ∥F.derivative.eval a∥ :=
Expand Down
4 changes: 2 additions & 2 deletions src/data/real/hyperreal.lean
Expand Up @@ -69,7 +69,7 @@ end

lemma neg_lt_of_tendsto_zero_of_pos {f : ℕ → ℝ} (hf : tendsto f at_top (𝓝 0)) :
∀ {r : ℝ}, r > 0 → (-r : ℝ*) < of_seq f :=
λ r hr, have hg : _ := tendsto.neg hf,
λ r hr, have hg : _ := hf.neg,
neg_lt_of_neg_lt (by rw [neg_zero] at hg; exact lt_of_tendsto_zero_of_pos hg hr)

lemma gt_of_tendsto_zero_of_neg {f : ℕ → ℝ} (hf : tendsto f at_top (𝓝 0)) :
Expand Down Expand Up @@ -649,7 +649,7 @@ end
theorem is_st_of_tendsto {f : ℕ → ℝ} {r : ℝ} (hf : tendsto f at_top (𝓝 r)) :
is_st (of_seq f) r :=
have hg : tendsto (λ n, f n - r) at_top (𝓝 0) :=
(sub_self r) ▸ (tendsto.sub hf tendsto_const_nhds),
(sub_self r) ▸ (hf.sub tendsto_const_nhds),
by rw [←(zero_add r), ←(sub_add_cancel f (λ n, r))];
exact is_st_add (infinitesimal_of_tendsto_zero hg) (is_st_refl_real r)

Expand Down
2 changes: 1 addition & 1 deletion src/measure_theory/decomposition.lean
Expand Up @@ -152,7 +152,7 @@ begin
have γ_le_d_s : γ ≤ d s,
{ have hγ : tendsto (λm:ℕ, γ - 2 * (1/2)^m) at_top (𝓝 γ),
{ suffices : tendsto (λm:ℕ, γ - 2 * (1/2)^m) at_top (𝓝 (γ - 2 * 0)), { simpa },
exact (tendsto.sub tendsto_const_nhds $ tendsto.mul tendsto_const_nhds $
exact (tendsto_const_nhds.sub $ tendsto_const_nhds.mul $
tendsto_pow_at_top_nhds_0_of_lt_1
(le_of_lt $ half_pos $ zero_lt_one) (half_lt_self zero_lt_one)) },
have hd : tendsto (λm, d (⋂n, f m n)) at_top (𝓝 (d (⋃ m, ⋂ n, f m n))),
Expand Down
14 changes: 7 additions & 7 deletions src/topology/algebra/group.lean
Expand Up @@ -52,7 +52,7 @@ lemma continuous_on.inv [topological_group α] [topological_space β] {f : β
continuous_inv.comp_continuous_on hf

@[to_additive]
lemma tendsto.inv [topological_group α] {f : β → α} {x : filter β} {a : α}
lemma filter.tendsto.inv [topological_group α] {f : β → α} {x : filter β} {a : α}
(hf : tendsto f x (𝓝 a)) : tendsto (λx, (f x)⁻¹) x (𝓝 a⁻¹) :=
tendsto.comp (continuous_iff_continuous_at.mp (topological_group.continuous_inv α) a) hf

Expand Down Expand Up @@ -116,7 +116,7 @@ lemma exists_nhds_split_inv [topological_group α] {s : set α} (hs : s ∈ 𝓝
∃ V ∈ 𝓝 (1 : α), ∀ v w ∈ V, v * w⁻¹ ∈ s :=
begin
have : tendsto (λa:α×α, a.1 * (a.2)⁻¹) ((𝓝 (1:α)).prod (𝓝 (1:α))) (𝓝 1),
{ simpa using tendsto.mul (@tendsto_fst α α (𝓝 1) (𝓝 1)) (tendsto.inv tendsto_snd) },
{ simpa using (@tendsto_fst α α (𝓝 1) (𝓝 1)).mul tendsto_snd.inv },
have : ((λa:α×α, a.1 * (a.2)⁻¹) ⁻¹' s) ∈ (𝓝 (1:α)).prod (𝓝 (1:α)) :=
this (by simpa using hs),
rcases mem_prod_iff.1 this with ⟨V₁, H₁, V₂, H₂, H⟩,
Expand All @@ -140,7 +140,7 @@ variable (α)
lemma nhds_one_symm [topological_group α] : comap (λr:α, r⁻¹) (𝓝 (1 : α)) = 𝓝 (1 : α) :=
begin
have lim : tendsto (λr:α, r⁻¹) (𝓝 1) (𝓝 1),
{ simpa using tendsto.inv (@tendsto_id α (𝓝 1)) },
{ simpa using (@tendsto_id α (𝓝 1)).inv },
refine comap_eq_of_inverse _ _ lim lim,
{ funext x, simp },
end
Expand All @@ -153,9 +153,9 @@ begin
refine comap_eq_of_inverse (λy:α, y * x) _ _ _,
{ funext x; simp },
{ suffices : tendsto (λy:α, y * x⁻¹) (𝓝 x) (𝓝 (x * x⁻¹)), { simpa },
exact tendsto.mul tendsto_id tendsto_const_nhds },
exact tendsto_id.mul tendsto_const_nhds },
{ suffices : tendsto (λy:α, y * x) (𝓝 1) (𝓝 (1 * x)), { simpa },
exact tendsto.mul tendsto_id tendsto_const_nhds }
exact tendsto_id.mul tendsto_const_nhds }
end

@[to_additive]
Expand Down Expand Up @@ -237,9 +237,9 @@ lemma continuous_on.sub [topological_add_group α] [topological_space β] {f :
(hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, f x - g x) s :=
continuous_sub.comp_continuous_on (hf.prod hg)

lemma tendsto.sub [topological_add_group α] {f : β → α} {g : β → α} {x : filter β} {a b : α}
lemma filter.tendsto.sub [topological_add_group α] {f : β → α} {g : β → α} {x : filter β} {a b : α}
(hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, f x - g x) x (𝓝 (a - b)) :=
by simp; exact tendsto.add hf (tendsto.neg hg)
by simp; exact hf.add hg.neg

lemma nhds_translation [topological_add_group α] (x : α) : comap (λy:α, y - x) (𝓝 0) = 𝓝 x :=
nhds_translation_add_neg x
Expand Down
2 changes: 1 addition & 1 deletion src/topology/algebra/infinite_sum.lean
Expand Up @@ -129,7 +129,7 @@ lemma tendsto_sum_nat_of_has_sum {f : ℕ → α} (h : has_sum f a) :
variable [topological_add_monoid α]

lemma has_sum_add (hf : has_sum f a) (hg : has_sum g b) : has_sum (λb, f b + g b) (a + b) :=
by simp [has_sum, sum_add_distrib]; exact tendsto.add hf hg
by simp [has_sum, sum_add_distrib]; exact hf.add hg

lemma summable_add (hf : summable f) (hg : summable g) : summable (λb, f b + g b) :=
summable_spec $ has_sum_add (has_sum_tsum hf)(has_sum_tsum hg)
Expand Down
5 changes: 2 additions & 3 deletions src/topology/algebra/monoid.lean
Expand Up @@ -68,7 +68,7 @@ lemma tendsto_mul {a b : α} : tendsto (λp:α×α, p.fst * p.snd) (𝓝 (a, b))
continuous_iff_continuous_at.mp (topological_monoid.continuous_mul α) (a, b)

@[to_additive]
lemma tendsto.mul {f : β → α} {g : β → α} {x : filter β} {a b : α}
lemma filter.tendsto.mul {f : β → α} {g : β → α} {x : filter β} {a b : α}
(hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) :
tendsto (λx, f x * g x) x (𝓝 (a * b)) :=
tendsto.comp (by rw [←nhds_prod_eq]; exact tendsto_mul) (hf.prod_mk hg)
Expand All @@ -81,8 +81,7 @@ lemma tendsto_list_prod {f : γ → β → α} {x : filter β} {a : γ → α} :
| (f :: l) h :=
begin
simp,
exact tendsto.mul
(h f (list.mem_cons_self _ _))
exact (h f (list.mem_cons_self _ _)).mul
(tendsto_list_prod l (assume c hc, h c (list.mem_cons_of_mem _ hc)))
end

Expand Down
2 changes: 1 addition & 1 deletion src/topology/algebra/uniform_group.lean
Expand Up @@ -197,7 +197,7 @@ have tendsto
((λp:(G×G), p.1 - p.2) ∘ (λp:(G×G)×(G×G), (p.1.2 - p.1.1, p.2.2 - p.2.1)))
(comap (λp:(G×G)×(G×G), (p.1.2 - p.1.1, p.2.2 - p.2.1)) ((𝓝 0).prod (𝓝 0)))
(𝓝 (0 - 0)) :=
(tendsto.sub tendsto_fst tendsto_snd).comp tendsto_comap,
(tendsto_fst.sub tendsto_snd).comp tendsto_comap,
begin
constructor,
rw [uniform_continuous, uniformity_prod_eq_prod, tendsto_map'_iff,
Expand Down
2 changes: 1 addition & 1 deletion src/topology/instances/nnreal.lean
Expand Up @@ -76,7 +76,7 @@ tendsto.comp (continuous_iff_continuous_at.1 continuous_of_real _) h
lemma tendsto.sub {f : filter α} {m n : α → nnreal} {r p : nnreal}
(hm : tendsto m f (𝓝 r)) (hn : tendsto n f (𝓝 p)) :
tendsto (λa, m a - n a) f (𝓝 (r - p)) :=
tendsto_of_real $ tendsto.sub (tendsto_coe.2 hm) (tendsto_coe.2 hn)
tendsto_of_real $ (tendsto_coe.2 hm).sub (tendsto_coe.2 hn)

lemma continuous_sub : continuous (λp:nnreal×nnreal, p.1 - p.2) :=
continuous_subtype_mk _ $
Expand Down
2 changes: 1 addition & 1 deletion src/topology/instances/real.lean
Expand Up @@ -397,7 +397,7 @@ lemma real.intermediate_value' {f : ℝ → ℝ} {a b t : ℝ}
(hf : ∀ x, a ≤ x → x ≤ b → tendsto f (𝓝 x) (𝓝 (f x)))
(ha : t ≤ f a) (hb : f b ≤ t) (hab : a ≤ b) : ∃ x : ℝ, a ≤ x ∧ x ≤ b ∧ f x = t :=
let ⟨x, hx₁, hx₂, hx₃⟩ := @real.intermediate_value
(λ x, - f x) a b (-t) (λ x hax hxb, tendsto.neg (hf x hax hxb))
(λ x, - f x) a b (-t) (λ x hax hxb, (hf x hax hxb).neg)
(neg_le_neg ha) (neg_le_neg hb) hab in
⟨x, hx₁, hx₂, neg_inj hx₃⟩

Expand Down
2 changes: 1 addition & 1 deletion src/topology/metric_space/gromov_hausdorff_realized.lean
Expand Up @@ -241,7 +241,7 @@ begin
exact ⟨candidates_nonneg hf, candidates_le_max_var hf⟩ },
{ refine equicontinuous_of_continuity_modulus (λt, 2 * max_var α β * t) _ _ _,
{ have : tendsto (λ (t : ℝ), 2 * (max_var α β : ℝ) * t) (𝓝 0) (𝓝 (2 * max_var α β * 0)) :=
tendsto.mul tendsto_const_nhds tendsto_id,
tendsto_const_nhds.mul tendsto_id,
simpa using this },
{ assume x y f hf,
exact candidates_lipschitz hf _ _ } }
Expand Down

0 comments on commit 3913d30

Please sign in to comment.