Skip to content

Commit

Permalink
feat(linear_algebra/free_module): add module.free.resolution (#8231)
Browse files Browse the repository at this point in the history
Any module is a quotient of a free module. This is stated as surjectivity of `finsupp.total M M R id : (M →₀ R) →ₗ[R] M`.
  • Loading branch information
riccardobrasca committed Jul 12, 2021
1 parent e1c649d commit 40ffaa5
Show file tree
Hide file tree
Showing 3 changed files with 18 additions and 1 deletion.
1 change: 0 additions & 1 deletion src/algebra/module/projective.lean
Expand Up @@ -51,7 +51,6 @@ https://en.wikipedia.org/wiki/Projective_module
- Direct sum of two projective modules is projective.
- Arbitrary sum of projective modules is projective.
- Any module admits a surjection from a projective module.
All of these should be relatively straightforward.
Expand Down
16 changes: 16 additions & 0 deletions src/linear_algebra/finsupp.lean
Expand Up @@ -433,6 +433,22 @@ theorem total_unique [unique α] (l : α →₀ R) (v) :
finsupp.total α M R v l = l (default α) • v (default α) :=
by rw [← total_single, ← unique_single l]

lemma total_surjective (h : function.surjective v) : function.surjective (finsupp.total α M R v) :=
begin
intro x,
obtain ⟨y, hy⟩ := h x,
exact ⟨finsupp.single y 1, by simp [hy]⟩
end

theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ :=
range_eq_top.2 $ total_surjective R h

/-- Any module is a quotient of a free module. This is stated as surjectivity of
`finsupp.total M M R id : (M →₀ R) →ₗ[R] M`. -/
lemma total_id_surjective (M) [add_comm_monoid M] [module R M] :
function.surjective (finsupp.total M M R id) :=
total_surjective R function.surjective_id

lemma range_total : (finsupp.total α M R v).range = span R (range v) :=
begin
ext x,
Expand Down
2 changes: 2 additions & 0 deletions src/linear_algebra/free_module.lean
Expand Up @@ -15,6 +15,8 @@ import logic.small
We introduce a class `module.free R M`, for `R` a `semiring` and `M` an `R`-module and we provide
several basic instances for this class.
Use `finsupp.total_id_surjective` to prove that any module is the quotient of a free module.
## Main definition
* `module.free R M` : the class of free `R`-modules.
Expand Down

0 comments on commit 40ffaa5

Please sign in to comment.