Skip to content

Commit

Permalink
chore(number_theory/cyclotomic): fix typo in lemma name (#16643)
Browse files Browse the repository at this point in the history
  • Loading branch information
alexjbest committed Sep 26, 2022
1 parent 765955f commit 653307a
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions src/number_theory/cyclotomic/rat.lean
Expand Up @@ -13,7 +13,7 @@ We gather results about cyclotomic extensions of `ℚ`. In particular, we comput
integers of a `p ^ n`-th cyclotomic extension of `ℚ`.
## Main results
* `is_cyclotomic_extension.rat.is_integral_closure_adjoing_singleton_of_prime_pow`: if `K` is a
* `is_cyclotomic_extension.rat.is_integral_closure_adjoin_singleton_of_prime_pow`: if `K` is a
`p ^ k`-th cyclotomic extension of `ℚ`, then `(adjoin ℤ {ζ})` is the integral closure of
`ℤ` in `K`.
* `is_cyclotomic_extension.rat.cyclotomic_ring_is_integral_closure_of_prime_pow`: the integral
Expand Down Expand Up @@ -75,7 +75,7 @@ end

/-- If `K` is a `p ^ k`-th cyclotomic extension of `ℚ`, then `(adjoin ℤ {ζ})` is the
integral closure of `ℤ` in `K`. -/
lemma is_integral_closure_adjoing_singleton_of_prime_pow
lemma is_integral_closure_adjoin_singleton_of_prime_pow
[hcycl : is_cyclotomic_extension {p ^ k} ℚ K] (hζ : is_primitive_root ζ ↑(p ^ k)) :
is_integral_closure (adjoin ℤ ({ζ} : set K)) ℤ K :=
begin
Expand Down Expand Up @@ -121,12 +121,12 @@ begin
exact subalgebra.sub_mem _ (self_mem_adjoin_singleton ℤ _) (subalgebra.one_mem _) }
end

lemma is_integral_closure_adjoing_singleton_of_prime [hcycl : is_cyclotomic_extension {p} ℚ K]
lemma is_integral_closure_adjoin_singleton_of_prime [hcycl : is_cyclotomic_extension {p} ℚ K]
(hζ : is_primitive_root ζ ↑p) :
is_integral_closure (adjoin ℤ ({ζ} : set K)) ℤ K :=
begin
rw [← pow_one p] at hζ hcycl,
exactI is_integral_closure_adjoing_singleton_of_prime_pow hζ,
exactI is_integral_closure_adjoin_singleton_of_prime_pow hζ,
end

local attribute [-instance] cyclotomic_field.algebra
Expand All @@ -143,7 +143,7 @@ begin
{ exact ne_zero.char_zero } },
have hζ := zeta_spec (p ^ k) ℚ (cyclotomic_field (p ^ k) ℚ),
refine ⟨is_fraction_ring.injective _ _, λ x, ⟨λ h, ⟨⟨x, _⟩, rfl⟩, _⟩⟩,
{ have := (is_integral_closure_adjoing_singleton_of_prime_pow hζ).is_integral_iff,
{ have := (is_integral_closure_adjoin_singleton_of_prime_pow hζ).is_integral_iff,
obtain ⟨y, rfl⟩ := this.1 h,
convert adjoin_mono _ y.2,
{ simp only [eq_iff_true_of_subsingleton] },
Expand Down Expand Up @@ -178,7 +178,7 @@ unity and `K` is a `p ^ k`-th cyclotomic extension of `ℚ`. -/
@[simps] noncomputable def _root_.is_primitive_root.adjoin_equiv_ring_of_integers
[hcycl : is_cyclotomic_extension {p ^ k} ℚ K] (hζ : is_primitive_root ζ ↑(p ^ k)) :
adjoin ℤ ({ζ} : set K) ≃ₐ[ℤ] (𝓞 K) :=
let _ := is_integral_closure_adjoing_singleton_of_prime_powin
let _ := is_integral_closure_adjoin_singleton_of_prime_powin
by exactI (is_integral_closure.equiv ℤ (adjoin ℤ ({ζ} : set K)) K (𝓞 K))

/-- The integral `power_basis` of `𝓞 K` given by a primitive root of unity, where `K` is a `p ^ k`
Expand Down

0 comments on commit 653307a

Please sign in to comment.