Skip to content

Commit

Permalink
feat(measure_theory/measure/measure_space): add some lemmas for the c…
Browse files Browse the repository at this point in the history
…ounting measure (#13485)
  • Loading branch information
JasonKYi committed Apr 21, 2022
1 parent 6490ee3 commit 777d1ec
Showing 1 changed file with 31 additions and 2 deletions.
33 changes: 31 additions & 2 deletions src/measure_theory/measure/measure_space.lean
Expand Up @@ -1616,6 +1616,9 @@ calc (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i : tsum_subtype s 1
lemma count_apply (hs : measurable_set s) : count s = ∑' i : s, 1 :=
by simp only [count, sum_apply, hs, dirac_apply', ← tsum_subtype s 1, pi.one_apply]

@[simp] lemma count_empty : count (∅ : set α) = 0 :=
by rw [count_apply measurable_set.empty, tsum_empty]

@[simp] lemma count_apply_finset [measurable_singleton_class α] (s : finset α) :
count (↑s : set α) = s.card :=
calc count (↑s : set α) = ∑' i : (↑s : set α), 1 : count_apply s.measurable_set
Expand All @@ -1637,19 +1640,45 @@ begin
... ≤ count s : measure_mono ht
end

@[simp] lemma count_apply_eq_top [measurable_singleton_class α] : count s = ∞ ↔ s.infinite :=
variable [measurable_singleton_class α]

@[simp] lemma count_apply_eq_top : count s = ∞ ↔ s.infinite :=
begin
by_cases hs : s.finite,
{ simp [set.infinite, hs, count_apply_finite] },
{ change s.infinite at hs,
simp [hs, count_apply_infinite] }
end

@[simp] lemma count_apply_lt_top [measurable_singleton_class α] : count s < ∞ ↔ s.finite :=
@[simp] lemma count_apply_lt_top : count s < ∞ ↔ s.finite :=
calc count s < ∞ ↔ count s ≠ ∞ : lt_top_iff_ne_top
... ↔ ¬s.infinite : not_congr count_apply_eq_top
... ↔ s.finite : not_not

lemma empty_of_count_eq_zero (hsc : count s = 0) : s = ∅ :=
begin
have hs : s.finite,
{ rw [← count_apply_lt_top, hsc],
exact with_top.zero_lt_top },
rw count_apply_finite _ hs at hsc,
simpa using hsc,
end

@[simp] lemma count_eq_zero_iff : count s = 0 ↔ s = ∅ :=
⟨empty_of_count_eq_zero, λ h, h.symm ▸ count_empty⟩

lemma count_ne_zero (hs' : s.nonempty) : count s ≠ 0 :=
begin
rw [ne.def, count_eq_zero_iff],
exact hs'.ne_empty,
end

@[simp] lemma count_singleton (a : α) : count ({a} : set α) = 1 :=
begin
rw [count_apply_finite ({a} : set α) (set.finite_singleton _), set.finite.to_finset],
simp,
end

end count

/-! ### Absolute continuity -/
Expand Down

0 comments on commit 777d1ec

Please sign in to comment.