Skip to content

Commit

Permalink
feat(ring_theory/dedekind_domain/selmer_group): add Selmer groups of …
Browse files Browse the repository at this point in the history
…Dedekind domains (#15405)
  • Loading branch information
Multramate committed Oct 3, 2022
1 parent a347076 commit 9aec1a2
Showing 1 changed file with 223 additions and 0 deletions.
223 changes: 223 additions & 0 deletions src/ring_theory/dedekind_domain/selmer_group.lean
@@ -0,0 +1,223 @@
/-
Copyright (c) 2022 David Kurniadi Angdinata. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Kurniadi Angdinata
-/

import data.zmod.quotient
import ring_theory.dedekind_domain.adic_valuation

/-!
# Selmer groups of fraction fields of Dedekind domains
Let $K$ be the field of fractions of a Dedekind domain $R$. For any set $S$ of prime ideals in the
height one spectrum of $R$, and for any natural number $n$, the Selmer group $K(S, n)$ is defined to
be the subgroup of the unit group $K^\times$ modulo $n$-th powers where each element has $v$-adic
valuation divisible by $n$ for all prime ideals $v$ away from $S$. In other words, this is precisely
$$ K(S, n) := \{x(K^\times)^n \in K^\times / (K^\times)^n \ \mid \
\forall v \notin S, \ \mathrm{ord}_v(x) \equiv 0 \pmod n\}. $$
There is a fundamental short exact sequence
$$ 1 \to R_S^\times / (R_S^\times)^n \to K(S, n) \to \mathrm{Cl}_S(R)[n] \to 0, $$
where $R_S^\times$ is the $S$-unit group of $R$ and $\mathrm{Cl}_S(R)$ is the $S$-class group of
$R$. If the flanking groups are both finite, then $K(S, n)$ is finite by the first isomorphism
theorem. Such is the case when $R$ is the ring of integers of a number field $K$, $S$ is finite, and
$n$ is positive, in which case $R_S^\times$ is finitely generated by Dirichlet's unit theorem and
$\mathrm{Cl}_S(R)$ is finite by the class number theorem.
This file defines the Selmer group $K(S, n)$ and some basic facts.
## Main definitions
* `is_dedekind_domain.selmer_group`: the Selmer group.
* TODO: maps in the sequence.
## Main statements
* TODO: proofs of exactness of the sequence.
* TODO: proofs of finiteness for global fields.
## Notations
* `K⟮S, n⟯`: the Selmer group with parameters `K`, `S`, and `n`.
## Implementation notes
The Selmer group is typically defined as a subgroup of the Galois cohomology group $H^1(K, \mu_n)$
with certain local conditions defined by $v$-adic valuations, where $\mu_n$ is the group of $n$-th
roots of unity over a separable closure of $K$. Here $H^1(K, \mu_n)$ is identified with
$K^\times / (K^\times)^n$ by the long exact sequence from Kummer theory and Hilbert's theorem 90,
and the fundamental short exact sequence becomes an easy consequence of the snake lemma. This file
will define all the maps explicitly for computational purposes, but isomorphisms to the Galois
cohomological definition will be provided when possible.
## References
https://doc.sagemath.org/html/en/reference/number_fields/sage/rings/number_field/selmer_group.html
## Tags
class group, selmer group, unit group
-/

local notation (name := quot) K/n := Kˣ ⧸ (pow_monoid_hom n : Kˣ →* Kˣ).range

namespace is_dedekind_domain

noncomputable theory

open_locale classical discrete_valuation non_zero_divisors

universes u v

variables {R : Type u} [comm_ring R] [is_domain R] [is_dedekind_domain R] {K : Type v} [field K]
[algebra R K] [is_fraction_ring R K] (v : height_one_spectrum R)

/-! ### Valuations of non-zero elements -/

namespace height_one_spectrum

/-- The multiplicative `v`-adic valuation on `Kˣ`. -/
def valuation_of_ne_zero_to_fun (x : Kˣ) : multiplicative ℤ :=
let hx := is_localization.sec R⁰ (x : K) in multiplicative.of_add $
(-(associates.mk v.as_ideal).count (associates.mk $ ideal.span {hx.fst}).factors : ℤ)
- (-(associates.mk v.as_ideal).count (associates.mk $ ideal.span {(hx.snd : R)}).factors : ℤ)

@[simp] lemma valuation_of_ne_zero_to_fun_eq (x : Kˣ) :
(v.valuation_of_ne_zero_to_fun x : ℤₘ₀) = v.valuation (x : K) :=
begin
change _ = _ * _,
rw [units.coe_inv],
change _ = ite _ _ _ * (ite (coe _ = _) _ _)⁻¹,
rw [is_localization.to_localization_map_sec,
if_neg $ is_localization.sec_fst_ne_zero le_rfl x.ne_zero,
if_neg $ non_zero_divisors.coe_ne_zero _],
any_goals { exact is_domain.to_nontrivial R },
refl
end

/-- The multiplicative `v`-adic valuation on `Kˣ`. -/
def valuation_of_ne_zero : Kˣ →* multiplicative ℤ :=
{ to_fun := v.valuation_of_ne_zero_to_fun,
map_one' := by { rw [← with_zero.coe_inj, valuation_of_ne_zero_to_fun_eq], exact map_one _ },
map_mul' := λ _ _, by { rw [← with_zero.coe_inj, with_zero.coe_mul],
simp only [valuation_of_ne_zero_to_fun_eq], exact map_mul _ _ _ } }

@[simp] lemma valuation_of_ne_zero_eq (x : Kˣ) :
(v.valuation_of_ne_zero x : ℤₘ₀) = v.valuation (x : K) :=
valuation_of_ne_zero_to_fun_eq v x

@[simp] lemma valuation_of_unit_eq (x : Rˣ) :
v.valuation_of_ne_zero (units.map (algebra_map R K : R →* K) x) = 1 :=
begin
rw [← with_zero.coe_inj, valuation_of_ne_zero_eq, units.coe_map, eq_iff_le_not_lt],
split,
{ exact v.valuation_le_one x },
{ cases x with x _ hx _,
change ¬v.valuation (algebra_map R K x) < 1,
apply_fun v.int_valuation at hx,
rw [map_one, map_mul] at hx,
rw [not_lt, ← hx, ← mul_one $ v.valuation _, valuation_of_algebra_map,
mul_le_mul_left₀ $ left_ne_zero_of_mul_eq_one hx],
exact v.int_valuation_le_one _ }
end

local attribute [semireducible] mul_opposite

/-- The multiplicative `v`-adic valuation on `Kˣ` modulo `n`-th powers. -/
def valuation_of_ne_zero_mod (n : ℕ) : K/n →* multiplicative (zmod n) :=
(int.quotient_zmultiples_nat_equiv_zmod n).to_multiplicative.to_monoid_hom.comp $
quotient_group.map (pow_monoid_hom n : Kˣ →* Kˣ).range
(add_subgroup.zmultiples (n : ℤ)).to_subgroup v.valuation_of_ne_zero
begin
rintro _ ⟨x, rfl⟩,
exact ⟨v.valuation_of_ne_zero x, by simpa only [pow_monoid_hom_apply, map_pow, int.to_add_pow]⟩
end

@[simp] lemma valuation_of_unit_mod_eq (n : ℕ) (x : Rˣ) :
v.valuation_of_ne_zero_mod n (units.map (algebra_map R K : R →* K) x : K/n) = 1 :=
by rw [valuation_of_ne_zero_mod, monoid_hom.comp_apply, ← quotient_group.coe_mk',
quotient_group.map_mk', valuation_of_unit_eq, quotient_group.coe_one, map_one]

end height_one_spectrum

/-! ### Selmer groups -/

variables {S S' : set $ height_one_spectrum R} {n : ℕ}

/-- The Selmer group `K⟮S, n⟯`. -/
def selmer_group : subgroup $ K/n :=
{ carrier := {x : K/n | ∀ v ∉ S, (v : height_one_spectrum R).valuation_of_ne_zero_mod n x = 1},
one_mem' := λ _ _, by rw [map_one],
mul_mem' := λ _ _ hx hy v hv, by rw [map_mul, hx v hv, hy v hv, one_mul],
inv_mem' := λ _ hx v hv, by rw [map_inv, hx v hv, inv_one] }

localized "notation K`⟮`S, n`⟯` := @selmer_group _ _ _ _ K _ _ _ S n" in selmer_group

namespace selmer_group

lemma monotone (hS : S ≤ S') : K⟮S, n⟯ ≤ (K⟮S', n⟯) := λ _ hx v, hx v ∘ mt (@hS v)

/-- The multiplicative `v`-adic valuations on `K⟮S, n⟯` for all `v ∈ S`. -/
def valuation : K⟮S, n⟯ →* S → multiplicative (zmod n) :=
{ to_fun := λ x v, (v : height_one_spectrum R).valuation_of_ne_zero_mod n (x : K/n),
map_one' := funext $ λ v, map_one _,
map_mul' := λ x y, funext $ λ v, map_mul _ x y }

lemma valuation_ker_eq :
valuation.ker = (K⟮(∅ : set $ height_one_spectrum R), n⟯).subgroup_of (K⟮S, n⟯) :=
begin
ext ⟨_, hx⟩,
split,
{ intros hx' v _,
by_cases hv : v ∈ S,
{ exact congr_fun hx' ⟨v, hv⟩ },
{ exact hx v hv } },
{ exact λ hx', funext $ λ v, hx' v $ set.not_mem_empty v }
end

/-- The natural homomorphism from `Rˣ` to `K⟮∅, n⟯`. -/
def from_unit {n : ℕ} : Rˣ →* K⟮(∅ : set $ height_one_spectrum R), n⟯ :=
{ to_fun := λ x, ⟨quotient_group.mk $ units.map (algebra_map R K).to_monoid_hom x,
λ v _, v.valuation_of_unit_mod_eq n x⟩,
map_one' := by simpa only [map_one],
map_mul' := λ _ _, by simpa only [map_mul] }

lemma from_unit_ker [hn : fact $ 0 < n] :
(@from_unit R _ _ _ K _ _ _ n).ker = (pow_monoid_hom n : Rˣ →* Rˣ).range :=
begin
ext ⟨_, _, _, _⟩,
split,
{ intro hx,
rcases (quotient_group.eq_one_iff _).mp (subtype.mk.inj hx) with ⟨⟨v, i, vi, iv⟩, hx⟩,
have hv : ↑(_ ^ n : Kˣ) = algebra_map R K _ := congr_arg units.val hx,
have hi : ↑(_ ^ n : Kˣ)⁻¹ = algebra_map R K _ := congr_arg units.inv hx,
rw [units.coe_pow] at hv,
rw [← inv_pow, units.inv_mk, units.coe_pow] at hi,
rcases @is_integrally_closed.exists_algebra_map_eq_of_is_integral_pow R _ _ _ _ _ _ _ v _
hn.out (hv.symm ▸ is_integral_algebra_map) with ⟨v', rfl⟩,
rcases @is_integrally_closed.exists_algebra_map_eq_of_is_integral_pow R _ _ _ _ _ _ _ i _
hn.out (hi.symm ▸ is_integral_algebra_map) with ⟨i', rfl⟩,
rw [← map_mul, map_eq_one_iff _ $ no_zero_smul_divisors.algebra_map_injective R K] at vi,
rw [← map_mul, map_eq_one_iff _ $ no_zero_smul_divisors.algebra_map_injective R K] at iv,
rw [units.coe_mk, ← map_pow] at hv,
exact ⟨⟨v', i', vi, iv⟩, by simpa only [units.ext_iff, pow_monoid_hom_apply, units.coe_pow]
using no_zero_smul_divisors.algebra_map_injective R K hv⟩ },
{ rintro ⟨_, hx⟩,
rw [← hx],
exact subtype.mk_eq_mk.mpr
((quotient_group.eq_one_iff _).mpr ⟨_, by simp only [pow_monoid_hom_apply, map_pow]⟩) }
end

/-- The injection induced by the natural homomorphism from `Rˣ` to `K⟮∅, n⟯`. -/
def from_unit_lift [fact $ 0 < n] : R/n →* K⟮(∅ : set $ height_one_spectrum R), n⟯ :=
(quotient_group.ker_lift _).comp
(quotient_group.quotient_mul_equiv_of_eq from_unit_ker).symm.to_monoid_hom

lemma from_unit_lift_injective [fact $ 0 < n] :
function.injective $ @from_unit_lift R _ _ _ K _ _ _ n _ :=
function.injective.comp (quotient_group.ker_lift_injective _) (mul_equiv.injective _)

end selmer_group

end is_dedekind_domain

0 comments on commit 9aec1a2

Please sign in to comment.