Skip to content

Commit

Permalink
chore(data/equiv/*): rename trans_symm and symm_trans to `self_tr…
Browse files Browse the repository at this point in the history
…ans_symm` and `symm_trans_self`. (#10309)

This frees up `symm_trans` to state `(a.trans b).symm = a.symm.trans b.symm`.

These names are consistent with `self_comp_symm` and `symm_comp_self`.
  • Loading branch information
eric-wieser committed Nov 13, 2021
1 parent 869cb32 commit b91d344
Show file tree
Hide file tree
Showing 13 changed files with 32 additions and 32 deletions.
6 changes: 3 additions & 3 deletions src/analysis/normed_space/affine_isometry.lean
Expand Up @@ -356,8 +356,8 @@ omit V V₂ V₃

@[simp] lemma trans_refl : e.trans (refl 𝕜 P₂) = e := ext $ λ x, rfl
@[simp] lemma refl_trans : (refl 𝕜 P).trans e = e := ext $ λ x, rfl
@[simp] lemma trans_symm : e.trans e.symm = refl 𝕜 P := ext e.symm_apply_apply
@[simp] lemma symm_trans : e.symm.trans e = refl 𝕜 P₂ := ext e.apply_symm_apply
@[simp] lemma self_trans_symm : e.trans e.symm = refl 𝕜 P := ext e.symm_apply_apply
@[simp] lemma symm_trans_self : e.symm.trans e = refl 𝕜 P₂ := ext e.apply_symm_apply

include V V₂ V₃
@[simp] lemma coe_symm_trans (e₁ : P ≃ᵃⁱ[𝕜] P₂) (e₂ : P₂ ≃ᵃⁱ[𝕜] P₃) :
Expand All @@ -378,7 +378,7 @@ instance : group (P ≃ᵃⁱ[𝕜] P) :=
one_mul := trans_refl,
mul_one := refl_trans,
mul_assoc := λ _ _ _, trans_assoc _ _ _,
mul_left_inv := trans_symm }
mul_left_inv := self_trans_symm }

@[simp] lemma coe_one : ⇑(1 : P ≃ᵃⁱ[𝕜] P) = id := rfl
@[simp] lemma coe_mul (e e' : P ≃ᵃⁱ[𝕜] P) : ⇑(e * e') = e ∘ e' := rfl
Expand Down
6 changes: 3 additions & 3 deletions src/analysis/normed_space/linear_isometry.lean
Expand Up @@ -305,8 +305,8 @@ omit σ₁₃ σ₂₁ σ₃₁ σ₃₂

@[simp] lemma trans_refl : e.trans (refl R₂ E₂) = e := ext $ λ x, rfl
@[simp] lemma refl_trans : (refl R E).trans e = e := ext $ λ x, rfl
@[simp] lemma trans_symm : e.trans e.symm = refl R E := ext e.symm_apply_apply
@[simp] lemma symm_trans : e.symm.trans e = refl R₂ E₂ := ext e.apply_symm_apply
@[simp] lemma self_trans_symm : e.trans e.symm = refl R E := ext e.symm_apply_apply
@[simp] lemma symm_trans_self : e.symm.trans e = refl R₂ E₂ := ext e.apply_symm_apply

include σ₁₃ σ₂₁ σ₃₂ σ₃₁
@[simp] lemma coe_symm_trans (e₁ : E ≃ₛₗᵢ[σ₁₂] E₂) (e₂ : E₂ ≃ₛₗᵢ[σ₂₃] E₃) :
Expand All @@ -326,7 +326,7 @@ instance : group (E ≃ₗᵢ[R] E) :=
one_mul := trans_refl,
mul_one := refl_trans,
mul_assoc := λ _ _ _, trans_assoc _ _ _,
mul_left_inv := trans_symm }
mul_left_inv := self_trans_symm }

@[simp] lemma coe_one : ⇑(1 : E ≃ₗᵢ[R] E) = id := rfl
@[simp] lemma coe_mul (e e' : E ≃ₗᵢ[R] E) : ⇑(e * e') = e ∘ e' := rfl
Expand Down
4 changes: 2 additions & 2 deletions src/data/equiv/basic.lean
Expand Up @@ -273,9 +273,9 @@ lemma eq_symm_apply {α β} (e : α ≃ β) {x y} : y = e.symm x ↔ e y = x :=

@[simp] theorem refl_trans (e : α ≃ β) : (equiv.refl α).trans e = e := by { cases e, refl }

@[simp] theorem symm_trans (e : α ≃ β) : e.symm.trans e = equiv.refl β := ext (by simp)
@[simp] theorem symm_trans_self (e : α ≃ β) : e.symm.trans e = equiv.refl β := ext (by simp)

@[simp] theorem trans_symm (e : α ≃ β) : e.trans e.symm = equiv.refl α := ext (by simp)
@[simp] theorem self_trans_symm (e : α ≃ β) : e.trans e.symm = equiv.refl α := ext (by simp)

lemma trans_assoc {δ} (ab : α ≃ β) (bc : β ≃ γ) (cd : γ ≃ δ) :
(ab.trans bc).trans cd = ab.trans (bc.trans cd) :=
Expand Down
4 changes: 2 additions & 2 deletions src/data/equiv/module.lean
Expand Up @@ -233,11 +233,11 @@ omit σ'

@[simp] lemma refl_symm [module R M] : (refl R M).symm = linear_equiv.refl R M := rfl

@[simp] lemma trans_symm [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) :
@[simp] lemma self_trans_symm [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) :
f.trans f.symm = linear_equiv.refl R M :=
by { ext x, simp }

@[simp] lemma symm_trans [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) :
@[simp] lemma symm_trans_self [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) :
f.symm.trans f = linear_equiv.refl R M₂ :=
by { ext x, simp }

Expand Down
4 changes: 2 additions & 2 deletions src/data/equiv/ring.lean
Expand Up @@ -427,8 +427,8 @@ namespace ring_equiv

variables [has_add R] [has_add S] [has_mul R] [has_mul S]

@[simp] theorem trans_symm (e : R ≃+* S) : e.trans e.symm = ring_equiv.refl R := ext e.3
@[simp] theorem symm_trans (e : R ≃+* S) : e.symm.trans e = ring_equiv.refl S := ext e.4
@[simp] theorem self_trans_symm (e : R ≃+* S) : e.trans e.symm = ring_equiv.refl R := ext e.3
@[simp] theorem symm_trans_self (e : R ≃+* S) : e.symm.trans e = ring_equiv.refl S := ext e.4

/-- If two rings are isomorphic, and the second is a domain, then so is the first. -/
protected lemma is_domain
Expand Down
4 changes: 2 additions & 2 deletions src/data/finsupp/basic.lean
Expand Up @@ -2450,12 +2450,12 @@ protected def dom_congr [add_comm_monoid M] (e : α ≃ β) : (α →₀ M) ≃+
{ to_fun := equiv_map_domain e,
inv_fun := equiv_map_domain e.symm,
left_inv := λ v, begin
simp only [← equiv_map_domain_trans, equiv.trans_symm],
simp only [← equiv_map_domain_trans, equiv.self_trans_symm],
exact equiv_map_domain_refl _
end,
right_inv := begin
assume v,
simp only [← equiv_map_domain_trans, equiv.symm_trans],
simp only [← equiv_map_domain_trans, equiv.symm_trans_self],
exact equiv_map_domain_refl _
end,
map_add' := λ a b, by simp only [equiv_map_domain_eq_map_domain]; exact map_domain_add }
Expand Down
8 changes: 4 additions & 4 deletions src/data/pequiv.lean
Expand Up @@ -208,7 +208,7 @@ end of_set

lemma symm_trans_rev (f : α ≃. β) (g : β ≃. γ) : (f.trans g).symm = g.symm.trans f.symm := rfl

lemma trans_symm (f : α ≃. β) : f.trans f.symm = of_set {a | (f a).is_some} :=
lemma self_trans_symm (f : α ≃. β) : f.trans f.symm = of_set {a | (f a).is_some} :=
begin
ext,
dsimp [pequiv.trans],
Expand All @@ -220,12 +220,12 @@ begin
{ simp {contextual := tt} }
end

lemma symm_trans (f : α ≃. β) : f.symm.trans f = of_set {b | (f.symm b).is_some} :=
symm_injective $ by simp [symm_trans_rev, trans_symm, -symm_symm]
lemma symm_trans_self (f : α ≃. β) : f.symm.trans f = of_set {b | (f.symm b).is_some} :=
symm_injective $ by simp [symm_trans_rev, self_trans_symm, -symm_symm]

lemma trans_symm_eq_iff_forall_is_some {f : α ≃. β} :
f.trans f.symm = pequiv.refl α ↔ ∀ a, is_some (f a) :=
by rw [trans_symm, of_set_eq_refl, set.eq_univ_iff_forall]; refl
by rw [self_trans_symm, of_set_eq_refl, set.eq_univ_iff_forall]; refl

instance : has_bot (α ≃. β) :=
⟨{ to_fun := λ _, none,
Expand Down
2 changes: 1 addition & 1 deletion src/field_theory/splitting_field.lean
Expand Up @@ -740,7 +740,7 @@ theorem splits_iff (f : polynomial K) [is_splitting_field K L f] :
let ⟨x, hxs, hxy⟩ := finset.mem_image.1 (by rwa multiset.to_finset_map at hy) in
hxy ▸ set_like.mem_coe.2 $ subalgebra.algebra_map_mem _ _),
λ h, @ring_equiv.to_ring_hom_refl K _ ▸
ring_equiv.trans_symm (ring_equiv.of_bijective _ $ algebra.bijective_algebra_map_iff.2 h) ▸
ring_equiv.self_trans_symm (ring_equiv.of_bijective _ $ algebra.bijective_algebra_map_iff.2 h) ▸
by { rw ring_equiv.to_ring_hom_trans, exact splits_comp_of_splits _ _ (splits L f) }⟩

theorem mul (f g : polynomial F) (hf : f ≠ 0) (hg : g ≠ 0) [is_splitting_field F K f]
Expand Down
4 changes: 2 additions & 2 deletions src/geometry/manifold/diffeomorph.lean
Expand Up @@ -163,9 +163,9 @@ h.to_equiv.symm_apply_apply x

@[simp] lemma symm_refl : (diffeomorph.refl I M n).symm = diffeomorph.refl I M n :=
ext $ λ _, rfl
@[simp] lemma trans_symm (h : M ≃ₘ^n⟮I, J⟯ N) : h.trans h.symm = diffeomorph.refl I M n :=
@[simp] lemma self_trans_symm (h : M ≃ₘ^n⟮I, J⟯ N) : h.trans h.symm = diffeomorph.refl I M n :=
ext h.symm_apply_apply
@[simp] lemma symm_trans (h : M ≃ₘ^n⟮I, J⟯ N) : h.symm.trans h = diffeomorph.refl J N n :=
@[simp] lemma symm_trans_self (h : M ≃ₘ^n⟮I, J⟯ N) : h.symm.trans h = diffeomorph.refl J N n :=
ext h.apply_symm_apply
@[simp] lemma symm_trans' (h₁ : M ≃ₘ^n⟮I, I'⟯ M') (h₂ : M' ≃ₘ^n⟮I', J⟯ N) :
(h₁.trans h₂).symm = h₂.symm.trans h₁.symm := rfl
Expand Down
10 changes: 5 additions & 5 deletions src/group_theory/perm/basic.lean
Expand Up @@ -26,7 +26,7 @@ instance perm_group : group (perm α) :=
mul_assoc := λ f g h, (trans_assoc _ _ _).symm,
one_mul := trans_refl,
mul_one := refl_trans,
mul_left_inv := trans_symm }
mul_left_inv := self_trans_symm }

theorem mul_apply (f g : perm α) (x) : (f * g) x = f (g x) :=
equiv.trans_apply _ _ _
Expand Down Expand Up @@ -74,13 +74,13 @@ equiv.refl_trans e

@[simp] lemma refl_mul (e : perm α) : equiv.refl α * e = e := equiv.refl_trans e

@[simp] lemma inv_trans (e : perm α) : e⁻¹.trans e = 1 := equiv.symm_trans e
@[simp] lemma inv_trans_self (e : perm α) : e⁻¹.trans e = 1 := equiv.symm_trans_self e

@[simp] lemma mul_symm (e : perm α) : e * e.symm = 1 := equiv.symm_trans e
@[simp] lemma mul_symm (e : perm α) : e * e.symm = 1 := equiv.symm_trans_self e

@[simp] lemma trans_inv (e : perm α) : e.trans e⁻¹ = 1 := equiv.trans_symm e
@[simp] lemma self_trans_inv (e : perm α) : e.trans e⁻¹ = 1 := equiv.self_trans_symm e

@[simp] lemma symm_mul (e : perm α) : e.symm * e = 1 := equiv.trans_symm e
@[simp] lemma symm_mul (e : perm α) : e.symm * e = 1 := equiv.self_trans_symm e

/-! Lemmas about `equiv.perm.sum_congr` re-expressed via the group structure. -/

Expand Down
2 changes: 1 addition & 1 deletion src/group_theory/perm/sign.lean
Expand Up @@ -405,7 +405,7 @@ lemma sign_aux_eq_sign_aux2 {n : ℕ} : ∀ (l : list α) (f : perm α) (e : α
(h : ∀ x, f x ≠ x → x ∈ l), sign_aux ((e.symm.trans f).trans e) = sign_aux2 l f
| [] f e h := have f = 1, from equiv.ext $
λ y, not_not.1 (mt (h y) (list.not_mem_nil _)),
by rw [this, one_def, equiv.trans_refl, equiv.symm_trans, ← one_def,
by rw [this, one_def, equiv.trans_refl, equiv.symm_trans_self, ← one_def,
sign_aux_one, sign_aux2]
| (x::l) f e h := begin
rw sign_aux2,
Expand Down
6 changes: 3 additions & 3 deletions src/linear_algebra/affine_space/affine_equiv.lean
Expand Up @@ -211,10 +211,10 @@ ext $ λ _, rfl
@[simp] lemma refl_trans (e : P₁ ≃ᵃ[k] P₂) : (refl k P₁).trans e = e :=
ext $ λ _, rfl

@[simp] lemma trans_symm (e : P₁ ≃ᵃ[k] P₂) : e.trans e.symm = refl k P₁ :=
@[simp] lemma self_trans_symm (e : P₁ ≃ᵃ[k] P₂) : e.trans e.symm = refl k P₁ :=
ext e.symm_apply_apply

@[simp] lemma symm_trans (e : P₁ ≃ᵃ[k] P₂) : e.symm.trans e = refl k P₂ :=
@[simp] lemma symm_trans_self (e : P₁ ≃ᵃ[k] P₂) : e.symm.trans e = refl k P₂ :=
ext e.apply_symm_apply

@[simp] lemma apply_line_map (e : P₁ ≃ᵃ[k] P₂) (a b : P₁) (c : k) :
Expand All @@ -230,7 +230,7 @@ instance : group (P₁ ≃ᵃ[k] P₁) :=
mul_assoc := λ e₁ e₂ e₃, trans_assoc _ _ _,
one_mul := trans_refl,
mul_one := refl_trans,
mul_left_inv := trans_symm }
mul_left_inv := self_trans_symm }

lemma one_def : (1 : P₁ ≃ᵃ[k] P₁) = refl k P₁ := rfl

Expand Down
4 changes: 2 additions & 2 deletions src/linear_algebra/determinant.lean
Expand Up @@ -258,9 +258,9 @@ begin
{ rcases H with ⟨s, ⟨b⟩⟩,
rw [← det_to_matrix b f, ← det_to_matrix (b.map e), to_matrix_comp (b.map e) b (b.map e),
to_matrix_comp (b.map e) b b, ← matrix.mul_assoc, matrix.det_conj],
{ rw [← to_matrix_comp, linear_equiv.comp_coe, e.symm_trans,
{ rw [← to_matrix_comp, linear_equiv.comp_coe, e.symm_trans_self,
linear_equiv.refl_to_linear_map, to_matrix_id] },
{ rw [← to_matrix_comp, linear_equiv.comp_coe, e.trans_symm,
{ rw [← to_matrix_comp, linear_equiv.comp_coe, e.self_trans_symm,
linear_equiv.refl_to_linear_map, to_matrix_id] } },
{ have H' : ¬ (∃ (t : finset N), nonempty (basis t A N)),
{ contrapose! H,
Expand Down

0 comments on commit b91d344

Please sign in to comment.