Skip to content

Commit

Permalink
feat(probability/martingale/convergence): L¹ martingale convergence t…
Browse files Browse the repository at this point in the history
…heorem and Lévy's upwards theorem (#16042)
  • Loading branch information
JasonKYi committed Aug 16, 2022
1 parent 01f1f1b commit d96e92d
Show file tree
Hide file tree
Showing 2 changed files with 249 additions and 1 deletion.
8 changes: 8 additions & 0 deletions src/measure_theory/measurable_space_def.lean
Expand Up @@ -438,6 +438,14 @@ theorem measurable_set_supr {ι} {m : ι → measurable_space α} {s : set α} :
generate_measurable {s : set α | ∃ i, measurable_set[m i] s} s :=
by simp only [supr, measurable_set_Sup, exists_range_iff]

lemma measurable_space_supr_eq (m : ι → measurable_space α) :
(⨆ n, m n) = measurable_space.generate_from {s | ∃ n, measurable_set[m n] s} :=
begin
ext s,
rw measurable_space.measurable_set_supr,
refl,
end

end complete_lattice

end measurable_space
Expand Down
242 changes: 241 additions & 1 deletion src/probability/martingale/convergence.lean
Expand Up @@ -14,7 +14,9 @@ import measure_theory.constructions.polish
The martingale convergence theorems are a collection of theorems characterizing the convergence
of a martingale provided it satisfies some boundedness conditions. This file contains the
almost everywhere martingale convergence theorem which provides an almost everywhere limit to
an L¹ bounded submartingale.
an L¹ bounded submartingale. It also contains the L¹ martingale convergence theorem which provides
an L¹ limit to a uniformly integrable submartingale. Finally, it also contains the Lévy upwards
theorems.
## Main results
Expand All @@ -23,6 +25,19 @@ an L¹ bounded submartingale.
everywhere to its limit process.
* `measure_theory.submartingale.mem_ℒp_limit_process`: the limit process of an Lᵖ-bounded
submartingale is Lᵖ.
* `measure_theory.submartingale.tendsto_snorm_one_limit_process`: part a of the L¹ martingale
convergence theorem: a uniformly integrable submartingale adapted to the filtration `ℱ` converges
almost everywhere and in L¹ to an integrable function which is measurable with respect to
the σ-algebra `⨆ n, ℱ n`.
* `measure_theory.martingale.ae_eq_condexp_limit_process`: part b the L¹ martingale convergence
theorem: if `f` is a uniformly integrable martingale adapted to the filtration `ℱ`, then
`f n` equals `𝔼[g | ℱ n]` almost everywhere where `g` is the limiting process of `f`.
* `measure_theory.integrable.tendsto_ae_condexp`: part c the L¹ martingale convergence theorem:
given a `⨆ n, ℱ n`-measurable function `g` where `ℱ` is a filtration, `𝔼[g | ℱ n]` converges
almost everywhere to `g`.
* `measure_theory.integrable.tendsto_snorm_condexp`: part c the L¹ martingale convergence theorem:
given a `⨆ n, ℱ n`-measurable function `g` where `ℱ` is a filtration, `𝔼[g | ℱ n]` converges in
L¹ to `g`.
-/

Expand Down Expand Up @@ -78,6 +93,11 @@ bounded, then either $f_n(\omega) \to \pm \infty$ or one of $\limsup f_n(\omega)
$\liminf f_n(\omega)$ equals $\pm \infty$ while the other is finite. But the first case
contradicts $\liminf |f_n(\omega)| < \infty$ while the second case contradicts finite upcrossings.
Furthermore, we introduced `filtration.limit_process` which chooses the limiting random variable
of a stochastic process if it exists, otherwise it returns 0. Hence, instead of showing an
existence statement, we phrased the a.e. martingale convergence theorem by showed that a
submartingale converges to its `limit_process` almost everywhere.
-/

/-- If a stochastic process has bounded upcrossing from below `a` to above `b`,
Expand Down Expand Up @@ -231,4 +251,224 @@ mem_ℒp_limit_process_of_snorm_bdd

end ae_convergence

section L1_convergence

variables [is_finite_measure μ] {g : Ω → ℝ}

/-!
### L¹ martingale convergence theorem
We will now prove the L¹ martingale convergence theorems.
The L¹ martingale convergence theorem states that:
(a) if `f` is a uniformly integrable (in the probability sense) submartingale adapted to the
filtration `ℱ`, it converges in L¹ to an integrable function `g` which is measurable with
respect to `ℱ∞ := ⨆ n, ℱ n` and
(b) if `f` is actually a martingale, `f n = 𝔼[g | ℱ n]` almost everywhere.
(c) Finally, if `h` is integrable and measurable with respect to `ℱ∞`, `(𝔼[h | ℱ n])ₙ` is a
uniformly integrable martingale which converges to `h` almost everywhere and in L¹.
The proof is quite simple. (a) follows directly from the a.e. martingale convergence theorem
and the Vitali convergence theorem as our definition of uniform integrability (in the probability
sense) directly implies L¹-uniform boundedness. We note that our definition of uniform
integrability is slightly non-standard but is equivalent to the usual literary definition. This
equivalence is provided by `measure_theory.uniform_integrable_iff`.
(b) follows since given $n$, we have for all $m \ge n$,
$$
\|f_n - \mathbb{E}[g \mid \mathcal{F}_n]\|_1 =
\|\mathbb{E}[f_m - g \mid \mathcal{F}_n]\|_1 \le \|\|f_m - g\|_1.
$$
Thus, taking $m \to \infty$ provides the almost everywhere equality.
Finally, to prove (c), we define $f_n := \mathbb{E}[h \mid \mathcal{F}_n]$. It is clear that
$(f_n)_n$ is a martingale by the tower property for conditional expectations. Furthermore,
$(f_n)_n$ is uniformly integrable in the probability sense. Indeed, as a single function is
uniformly integrable in the measure theory sense, for all $\epsilon > 0$, there exists some
$\delta > 0$ such that for all measurable set $A$ with $\mu(A) < δ$, we have
$\mathbb{E}|h|\mathbf{1}_A < \epsilon$. So, since for sufficently large $\lambda$, by the Markov
inequality, we have for all $n$,
$$
\mu(|f_n| \ge \lambda) \le \lambda^{-1}\mathbb{E}|f_n| \le \lambda^{-1}\mathbb|g| < \delta,
$$
we have for sufficently large $\lambda$, for all $n$,
$$
\mathbb{E}|f_n|\mathbf{1}_{|f_n| \ge \lambda} \le
\mathbb|g|\mathbf{1}_{|f_n| \ge \lambda} < \epsilon,
$$
implying $(f_n)_n$ is uniformly integrable. Now, to prove $f_n \to h$ almost everywhere and in
L¹, it suffices to show that $h = g$ almost everywhere where $g$ is the almost everywhere and L¹
limit of $(f_n)_n$ from part (b) of the theorem. By noting that, for all $s \in \mathcal{F}_n$,
we have
$$
\mathbb{E}g\mathbf{1}_s = \mathbb{E}[\mathbb{E}[g \mid \mathcal{F}_n]\mathbf{1}_s] =
\mathbb{E}[\mathbb{E}[h \mid \mathcal{F}_n]\mathbf{1}_s] = \mathbb{E}h\mathbf{1}_s
$$
where $\mathbb{E}[g \mid \mathcal{F}_n = \mathbb{E}[h \mid \mathcal{F}_n]$ almost everywhere
by part (b); the equality also holds for all $s \in \mathcal{F}_\infty$ by Dynkin's theorem.
Thus, as both $h$ and $g$ are $\mathcal{F}_\infty$-measurable, $h = g$ almost everywhere as
required.
Similar to the a.e. martingale convergence theorem, rather than showing the existence of the
limiting process, we phrased the L¹-martingale convergence theorem by proving that a submartingale
does converge in L¹ to its `limit_process`. However, in contrast to the a.e. martingale convergence
theorem, we do not need to introduce a L¹ version of `filtration.limit_process` as the L¹ limit
and the a.e. limit of a submartingale coincide.
-/

/-- Part a of the **L¹ martingale convergence theorem**: a uniformly integrable submartingale
adapted to the filtration `ℱ` converges a.e. and in L¹ to an integrable function which is
measurable with respect to the σ-algebra `⨆ n, ℱ n`. -/
lemma submartingale.tendsto_snorm_one_limit_process
(hf : submartingale f ℱ μ) (hunif : uniform_integrable f 1 μ) :
tendsto (λ n, snorm (f n - ℱ.limit_process f μ) 1 μ) at_top (𝓝 0) :=
begin
obtain ⟨R, hR⟩ := hunif.2.2,
have hmeas : ∀ n, ae_strongly_measurable (f n) μ :=
λ n, ((hf.strongly_measurable n).mono (ℱ.le _)).ae_strongly_measurable,
exact tendsto_Lp_of_tendsto_in_measure _ le_rfl ennreal.one_ne_top hmeas
(mem_ℒp_limit_process_of_snorm_bdd hmeas hR) hunif.2.1
(tendsto_in_measure_of_tendsto_ae hmeas $ hf.ae_tendsto_limit_process hR),
end

lemma submartingale.ae_tendsto_limit_process_of_uniform_integrable
(hf : submartingale f ℱ μ) (hunif : uniform_integrable f 1 μ) :
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (ℱ.limit_process f μ ω)) :=
let ⟨R, hR⟩ := hunif.2.2 in hf.ae_tendsto_limit_process hR

/-- If a martingale `f` adapted to `ℱ` converges in L¹ to `g`, then for all `n`, `f n` is almost
everywhere equal to `𝔼[g | ℱ n]`. -/
lemma martingale.eq_condexp_of_tendsto_snorm {μ : measure Ω}
(hf : martingale f ℱ μ) (hg : integrable g μ)
(hgtends : tendsto (λ n, snorm (f n - g) 1 μ) at_top (𝓝 0)) (n : ℕ) :
f n =ᵐ[μ] μ[g | ℱ n] :=
begin
rw [← sub_ae_eq_zero, ← snorm_eq_zero_iff ((((hf.strongly_measurable n).mono (ℱ.le _)).sub
(strongly_measurable_condexp.mono (ℱ.le _))).ae_strongly_measurable) one_ne_zero],
have ht : tendsto (λ m, snorm (μ[f m - g | ℱ n]) 1 μ) at_top (𝓝 0),
{ have hint : ∀ m, integrable (f m - g) μ := λ m, (hf.integrable m).sub hg,
exact tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds hgtends (λ m, zero_le _)
(λ m, snorm_one_condexp_le_snorm _) },
have hev : ∀ m ≥ n, snorm (μ[f m - g | ℱ n]) 1 μ = snorm (f n - μ[g | ℱ n]) 1 μ,
{ refine λ m hm, snorm_congr_ae
((condexp_sub (hf.integrable m) hg).trans _),
filter_upwards [hf.2 n m hm] with x hx,
simp only [hx, pi.sub_apply] },
exact tendsto_nhds_unique (tendsto_at_top_of_eventually_const hev) ht,
end

/-- Part b of the **L¹ martingale convergence theorem**: if `f` is a uniformly integrable martingale
adapted to the filtration `ℱ`, then for all `n`, `f n` is almost everywhere equal to the conditional
expectation of its limiting process wrt. `ℱ n`. -/
lemma martingale.ae_eq_condexp_limit_process
(hf : martingale f ℱ μ) (hbdd : uniform_integrable f 1 μ) (n : ℕ) :
f n =ᵐ[μ] μ[ℱ.limit_process f μ | ℱ n] :=
let ⟨R, hR⟩ := hbdd.2.2 in hf.eq_condexp_of_tendsto_snorm
((mem_ℒp_limit_process_of_snorm_bdd hbdd.1 hR).integrable le_rfl)
(hf.submartingale.tendsto_snorm_one_limit_process hbdd) n

/-- Part c of the **L¹ martingale convergnce theorem**: Given a integrable function `g` which
is measurable with respect to `⨆ n, ℱ n` where `ℱ` is a filtration, the martingale defined by
`𝔼[g | ℱ n]` converges almost everywhere to `g`.
This martingale also converges to `g` in L¹ and this result is provided by
`measure_theory.integrable.tendsto_snorm_condexp` -/
lemma integrable.tendsto_ae_condexp
(hg : integrable g μ) (hgmeas : strongly_measurable[⨆ n, ℱ n] g) :
∀ᵐ x ∂μ, tendsto (λ n, μ[g | ℱ n] x) at_top (𝓝 (g x)) :=
begin
have hle : (⨆ n, ℱ n) ≤ m0 := Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _),
have hunif : uniform_integrable (λ n, μ[g | ℱ n]) 1 μ := hg.uniform_integrable_condexp_filtration,
obtain ⟨R, hR⟩ := hunif.2.2,
have hlimint : integrable (ℱ.limit_process (λ n, μ[g | ℱ n]) μ) μ :=
(mem_ℒp_limit_process_of_snorm_bdd hunif.1 hR).integrable le_rfl,
suffices : g =ᵐ[μ] ℱ.limit_process (λ n x, μ[g | ℱ n] x) μ,
{ filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limit_process hR]
with x heq ht,
rwa heq },
have : ∀ n s, measurable_set[ℱ n] s → ∫ x in s, g x ∂μ =
∫ x in s, ℱ.limit_process (λ n x, μ[g | ℱ n] x) μ x ∂μ,
{ intros n s hs,
rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs],
refine set_integral_congr_ae (ℱ.le _ _ hs) _,
filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limit_process hunif n] with x hx _,
rwa hx },
refine ae_eq_of_forall_set_integral_eq_of_sigma_finite' hle
(λ s _ _, hg.integrable_on) (λ s _ _, hlimint.integrable_on) (λ s hs, _)
hgmeas.ae_strongly_measurable' strongly_measurable_limit_process.ae_strongly_measurable',
refine @measurable_space.induction_on_inter _ _ _ (⨆ n, ℱ n)
(measurable_space.measurable_space_supr_eq ℱ) _ _ _ _ _ _ hs,
{ rintro s ⟨n, hs⟩ t ⟨m, ht⟩ -,
by_cases hnm : n ≤ m,
{ exact ⟨m, (ℱ.mono hnm _ hs).inter ht⟩ },
{ exact ⟨n, hs.inter (ℱ.mono (not_le.1 hnm).le _ ht)⟩ } },
{ simp only [measure_empty, with_top.zero_lt_top, measure.restrict_empty,
integral_zero_measure, forall_true_left] },
{ rintro t ⟨n, ht⟩ -,
exact this n _ ht },
{ rintro t htmeas ht -,
have hgeq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ _ htmeas (hg.trim hle hgmeas),
have hheq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ _ htmeas
(hlimint.trim hle strongly_measurable_limit_process),
rw [add_comm, ← eq_sub_iff_add_eq] at hgeq hheq,
rw [set_integral_trim hle hgmeas htmeas.compl,
set_integral_trim hle strongly_measurable_limit_process htmeas.compl,
hgeq, hheq, ← set_integral_trim hle hgmeas htmeas,
← set_integral_trim hle strongly_measurable_limit_process htmeas,
← integral_trim hle hgmeas, ← integral_trim hle strongly_measurable_limit_process,
← integral_univ, this 0 _ measurable_set.univ, integral_univ, ht (measure_lt_top _ _)] },
{ rintro f hf hfmeas heq -,
rw [integral_Union (λ n, hle _ (hfmeas n)) hf hg.integrable_on,
integral_Union (λ n, hle _ (hfmeas n)) hf hlimint.integrable_on],
exact tsum_congr (λ n, heq _ (measure_lt_top _ _)) }
end

/-- Part c of the **L¹ martingale convergnce theorem**: Given a integrable function `g` which
is measurable with respect to `⨆ n, ℱ n` where `ℱ` is a filtration, the martingale defined by
`𝔼[g | ℱ n]` converges in L¹ to `g`.
This martingale also converges to `g` almost everywhere and this result is provided by
`measure_theory.integrable.tendsto_ae_condexp` -/
lemma integrable.tendsto_snorm_condexp
(hg : integrable g μ) (hgmeas : strongly_measurable[⨆ n, ℱ n] g) :
tendsto (λ n, snorm (μ[g | ℱ n] - g) 1 μ) at_top (𝓝 0) :=
tendsto_Lp_of_tendsto_in_measure _ le_rfl ennreal.one_ne_top
(λ n, (strongly_measurable_condexp.mono (ℱ.le n)).ae_strongly_measurable)
(mem_ℒp_one_iff_integrable.2 hg) (hg.uniform_integrable_condexp_filtration).2.1
(tendsto_in_measure_of_tendsto_ae
(λ n,(strongly_measurable_condexp.mono (ℱ.le n)).ae_strongly_measurable)
(hg.tendsto_ae_condexp hgmeas))

/-- **Lévy's upward theorem**, almost everywhere version: given a function `g` and a filtration
`ℱ`, the sequence defined by `𝔼[g | ℱ n]` converges almost everywhere to `𝔼[g | ⨆ n, ℱ n]`. -/
lemma tendsto_ae_condexp (g : Ω → ℝ) :
∀ᵐ x ∂μ, tendsto (λ n, μ[g | ℱ n] x) at_top (𝓝 (μ[g | ⨆ n, ℱ n] x)) :=
begin
have ht : ∀ᵐ x ∂μ, tendsto (λ n, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x) at_top (𝓝 (μ[g | ⨆ n, ℱ n] x)) :=
integrable_condexp.tendsto_ae_condexp strongly_measurable_condexp,
have heq : ∀ n, ∀ᵐ x ∂μ, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x = μ[g | ℱ n] x :=
λ n, condexp_condexp_of_le (le_supr _ n) (supr_le (λ n, ℱ.le n)),
rw ← ae_all_iff at heq,
filter_upwards [heq, ht] with x hxeq hxt,
exact hxt.congr hxeq,
end

/-- **Lévy's upward theorem**, L¹ version: given a function `g` and a filtration `ℱ`, the
sequence defined by `𝔼[g | ℱ n]` converges in L¹ to `𝔼[g | ⨆ n, ℱ n]`. -/
lemma tendsto_snorm_condexp (g : Ω → ℝ) :
tendsto (λ n, snorm (μ[g | ℱ n] - μ[g | ⨆ n, ℱ n]) 1 μ) at_top (𝓝 0) :=
begin
have ht : tendsto (λ n, snorm (μ[μ[g | ⨆ n, ℱ n] | ℱ n] - μ[g | ⨆ n, ℱ n]) 1 μ) at_top (𝓝 0) :=
integrable_condexp.tendsto_snorm_condexp strongly_measurable_condexp,
have heq : ∀ n, ∀ᵐ x ∂μ, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x = μ[g | ℱ n] x :=
λ n, condexp_condexp_of_le (le_supr _ n) (supr_le (λ n, ℱ.le n)),
refine ht.congr (λ n, snorm_congr_ae _),
filter_upwards [heq n] with x hxeq,
simp only [hxeq, pi.sub_apply],
end

end L1_convergence

end measure_theory

0 comments on commit d96e92d

Please sign in to comment.