Skip to content

Commit

Permalink
use semi_normed_space
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Jul 6, 2021
1 parent 30dddea commit e8f80d2
Showing 1 changed file with 16 additions and 16 deletions.
32 changes: 16 additions & 16 deletions src/measure_theory/set_integral.lean
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ section normed_group
variables [normed_group E] [measurable_space E] {f g : α → E} {s t : set α} {μ ν : measure α}
{l l' : filter α} [borel_space E] [second_countable_topology E]

variables [complete_space E] [normed_space ℝ E]
variables [complete_space E] [semi_normed_space ℝ E]


lemma set_integral_congr_ae (hs : measurable_set s) (h : ∀ᵐ x ∂μ, x ∈ s → f x = g x) :
Expand Down Expand Up @@ -252,7 +252,7 @@ We prove that for any set `s`, the function `λ f : α →₁[μ] E, ∫ x in s,
variables [normed_group E] [measurable_space E] [second_countable_topology E] [borel_space E]
{𝕜 : Type*} [is_R_or_C 𝕜] [measurable_space 𝕜]
[normed_group F] [measurable_space F] [second_countable_topology F] [borel_space F]
[normed_space 𝕜 F]
[semi_normed_space 𝕜 F]
{p : ℝ≥0∞} {μ : measure α}

/-- For `f : Lp E p μ`, we can define an element of `Lp E p (μ.restrict s)` by
Expand Down Expand Up @@ -316,7 +316,7 @@ mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp f).restrict s)
variables {𝕜}

@[continuity]
lemma continuous_set_integral [normed_space ℝ E] [complete_space E] (s : set α) :
lemma continuous_set_integral [semi_normed_space ℝ E] [complete_space E] (s : set α) :
continuous (λ f : α →₁[μ] E, ∫ x in s, f x ∂μ) :=
begin
haveI : fact ((1 : ℝ≥0∞) ≤ 1) := ⟨le_rfl⟩,
Expand Down Expand Up @@ -347,7 +347,7 @@ Often there is a good formula for `(μ (s i)).to_real`, so the formalization can
argument `m` with this formula and a proof `of `(λ i, (μ (s i)).to_real) =ᶠ[li] m`. Without these
arguments, `m i = (μ (s i)).to_real` is used in the output. -/
lemma filter.tendsto.integral_sub_linear_is_o_ae
[normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
[semi_normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
{μ : measure α} {l : filter α} [l.is_measurably_generated]
{f : α → E} {b : E} (h : tendsto f (l ⊓ μ.ae) (𝓝 b))
(hfm : measurable_at_filter f l μ) (hμ : μ.finite_at_filter l)
Expand Down Expand Up @@ -382,7 +382,7 @@ argument `m` with this formula and a proof `of `(λ i, (μ (s i)).to_real) =ᶠ[
arguments, `m i = (μ (s i)).to_real` is used in the output. -/
lemma continuous_within_at.integral_sub_linear_is_o_ae
[topological_space α] [opens_measurable_space α]
[normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
[semi_normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
{μ : measure α} [locally_finite_measure μ] {a : α} {t : set α}
{f : α → E} (ha : continuous_within_at f t a) (ht : measurable_set t)
(hfm : measurable_at_filter f (𝓝[t] a) μ)
Expand All @@ -405,7 +405,7 @@ argument `m` with this formula and a proof `of `(λ i, (μ (s i)).to_real) =ᶠ[
arguments, `m i = (μ (s i)).to_real` is used in the output. -/
lemma continuous_at.integral_sub_linear_is_o_ae
[topological_space α] [opens_measurable_space α]
[normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
[semi_normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
{μ : measure α} [locally_finite_measure μ] {a : α}
{f : α → E} (ha : continuous_at f a) (hfm : measurable_at_filter f (𝓝 a) μ)
{s : ι → set α} {li : filter ι} (hs : tendsto s li ((𝓝 a).lift' powerset))
Expand Down Expand Up @@ -438,7 +438,7 @@ argument `m` with this formula and a proof `of `(λ i, (μ (s i)).to_real) =ᶠ[
arguments, `m i = (μ (s i)).to_real` is used in the output. -/
lemma continuous_on.integral_sub_linear_is_o_ae
[topological_space α] [opens_measurable_space α]
[normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
[semi_normed_space ℝ E] [second_countable_topology E] [complete_space E] [borel_space E]
{μ : measure α} [locally_finite_measure μ] {a : α} {t : set α}
{f : α → E} (hft : continuous_on f t) (ha : a ∈ t) (ht : measurable_set t)
{s : ι → set α} {li : filter ι} (hs : tendsto s li ((𝓝[t] a).lift' powerset))
Expand All @@ -457,8 +457,8 @@ the composition, as we are dealing with classes of functions, but it has already
as `continuous_linear_map.comp_Lp`. We take advantage of this construction here.
-/

variables {μ : measure α} {𝕜 : Type*} [is_R_or_C 𝕜] [normed_space 𝕜 E]
[normed_group F] [normed_space 𝕜 F]
variables {μ : measure α} {𝕜 : Type*} [is_R_or_C 𝕜] [semi_normed_space 𝕜 E]
[normed_group F] [semi_normed_space 𝕜 F]
{p : ennreal}

local attribute [instance] fact_one_le_one_ennreal
Expand All @@ -468,7 +468,7 @@ namespace continuous_linear_map
variables [measurable_space F] [borel_space F]

variables [second_countable_topology F] [complete_space F]
[borel_space E] [second_countable_topology E] [normed_space ℝ F]
[borel_space E] [second_countable_topology E] [semi_normed_space ℝ F]

lemma integral_comp_Lp (L : E →L[𝕜] F) (φ : Lp E p μ) :
∫ a, (L.comp_Lp φ) a ∂μ = ∫ a, L (φ a) ∂μ :=
Expand All @@ -479,7 +479,7 @@ lemma continuous_integral_comp_L1 [measurable_space 𝕜] [opens_measurable_spac
by { rw ← funext L.integral_comp_Lp, exact continuous_integral.comp (L.comp_LpL 1 μ).continuous, }

variables [complete_space E] [measurable_space 𝕜] [opens_measurable_space 𝕜]
[normed_space ℝ E] [is_scalar_tower ℝ 𝕜 E] [is_scalar_tower ℝ 𝕜 F]
[semi_normed_space ℝ E] [is_scalar_tower ℝ 𝕜 E] [is_scalar_tower ℝ 𝕜 F]

lemma integral_comp_comm (L : E →L[𝕜] F) {φ : α → E} (φ_int : integrable φ μ) :
∫ a, L (φ a) ∂μ = L (∫ a, φ a ∂μ) :=
Expand All @@ -502,7 +502,7 @@ begin
all_goals { assumption }
end

lemma integral_apply {H : Type*} [normed_group H] [normed_space ℝ H]
lemma integral_apply {H : Type*} [normed_group H] [semi_normed_space ℝ H]
[second_countable_topology $ H →L[ℝ] E] {φ : α → H →L[ℝ] E} (φ_int : integrable φ μ) (v : H) :
(∫ a, φ a ∂μ) v = ∫ a, φ a v ∂μ :=
((continuous_linear_map.apply ℝ E v).integral_comp_comm φ_int).symm
Expand All @@ -525,8 +525,8 @@ end continuous_linear_map
namespace linear_isometry

variables [measurable_space F] [borel_space F] [second_countable_topology F] [complete_space F]
[normed_space ℝ F] [is_scalar_tower ℝ 𝕜 F]
[borel_space E] [second_countable_topology E] [complete_space E] [normed_space ℝ E]
[semi_normed_space ℝ F] [is_scalar_tower ℝ 𝕜 F]
[borel_space E] [second_countable_topology E] [complete_space E] [semi_normed_space ℝ E]
[is_scalar_tower ℝ 𝕜 E]
[measurable_space 𝕜] [opens_measurable_space 𝕜]

Expand All @@ -535,9 +535,9 @@ L.to_continuous_linear_map.integral_comp_comm' L.antilipschitz _

end linear_isometry

variables [borel_space E] [second_countable_topology E] [complete_space E] [normed_space ℝ E]
variables [borel_space E] [second_countable_topology E] [complete_space E] [semi_normed_space ℝ E]
[measurable_space F] [borel_space F] [second_countable_topology F] [complete_space F]
[normed_space ℝ F]
[semi_normed_space ℝ F]
[measurable_space 𝕜] [borel_space 𝕜]

@[norm_cast] lemma integral_of_real {f : α → ℝ} : ∫ a, (f a : 𝕜) ∂μ = ↑∫ a, f a ∂μ :=
Expand Down

0 comments on commit e8f80d2

Please sign in to comment.