Skip to content

Commit

Permalink
refactor(topology/separation): rename regular_space to t3_space (#…
Browse files Browse the repository at this point in the history
…15169)

I'm going to add a version of `regular_space` without `t0_space` and prove, e.g., that any uniform space is a regular space in this sense. To do this, I need to rename the existing `regular_space`.
  • Loading branch information
urkud committed Jul 13, 2022
1 parent 6c351a8 commit ede73b2
Show file tree
Hide file tree
Showing 20 changed files with 85 additions and 87 deletions.
4 changes: 2 additions & 2 deletions src/analysis/complex/upper_half_plane/topology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ lemma continuous_im : continuous im := complex.continuous_im.comp continuous_coe
instance : topological_space.second_countable_topology ℍ :=
topological_space.subtype.second_countable_topology _ _

instance : regular_space ℍ := subtype.regular_space
instance : normal_space ℍ := normal_space_of_regular_second_countable
instance : t3_space ℍ := subtype.t3_space
instance : normal_space ℍ := normal_space_of_t3_second_countable

instance : contractible_space ℍ :=
(convex_halfspace_im_gt 0).contractible_space ⟨I, one_pos.trans_eq I_im.symm⟩
Expand Down
2 changes: 1 addition & 1 deletion src/analysis/locally_convex/balanced_core_hull.lean
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ end

variables (𝕜 E)

lemma nhds_basis_closed_balanced [regular_space E] : (𝓝 (0 : E)).has_basis
lemma nhds_basis_closed_balanced [t3_space E] : (𝓝 (0 : E)).has_basis
(λ (s : set E), s ∈ 𝓝 (0 : E) ∧ is_closed s ∧ balanced 𝕜 s) id :=
begin
refine (closed_nhds_basis 0).to_has_basis (λ s hs, _) (λ s hs, ⟨s, ⟨hs.1, hs.2.1⟩, rfl.subset⟩),
Expand Down
2 changes: 1 addition & 1 deletion src/analysis/locally_convex/bounded.lean
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ section uniform_add_group

variables [nondiscrete_normed_field 𝕜] [add_comm_group E] [module 𝕜 E]
variables [uniform_space E] [uniform_add_group E] [has_continuous_smul 𝕜 E]
variables [regular_space E]
variables [t3_space E]

lemma totally_bounded.is_vonN_bounded {s : set E} (hs : totally_bounded s) :
bornology.is_vonN_bounded 𝕜 s :=
Expand Down
2 changes: 1 addition & 1 deletion src/topology/alexandroff.lean
Original file line number Diff line number Diff line change
Expand Up @@ -350,7 +350,7 @@ by induction x using alexandroff.rec; induction y using alexandroff.rec;
In this section we prove that `alexandroff X` is a compact space; it is a T₀ (resp., T₁) space if
the original space satisfies the same separation axiom. If the original space is a locally compact
Hausdorff space, then `alexandroff X` is a normal (hence, regular and Hausdorff) space.
Hausdorff space, then `alexandroff X` is a normal (hence, T₃ and Hausdorff) space.
Finally, if the original space `X` is *not* compact and is a preconnected space, then
`alexandroff X` is a connected space.
Expand Down
10 changes: 5 additions & 5 deletions src/topology/algebra/group.lean
Original file line number Diff line number Diff line change
Expand Up @@ -969,7 +969,7 @@ lemma topological_group.t1_space (h : @is_closed G _ {1}) : t1_space G :=
⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩

@[to_additive]
lemma topological_group.regular_space [t1_space G] : regular_space G :=
lemma topological_group.t3_space [t1_space G] : t3_space G :=
⟨assume s a hs ha,
let f := λ p : G × G, p.1 * (p.2)⁻¹ in
have hf : continuous f := continuous_fst.mul continuous_snd.inv,
Expand All @@ -989,15 +989,15 @@ lemma topological_group.regular_space [t1_space G] : regular_space G :=

@[to_additive]
lemma topological_group.t2_space [t1_space G] : t2_space G :=
@regular_space.t2_space G _ (topological_group.regular_space G)
@t3_space.t2_space G _ (topological_group.t3_space G)

variables {G} (S : subgroup G) [subgroup.normal S] [is_closed (S : set G)]

@[to_additive]
instance subgroup.regular_quotient_of_is_closed
(S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] : regular_space (G ⧸ S) :=
instance subgroup.t3_quotient_of_is_closed
(S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] : t3_space (G ⧸ S) :=
begin
suffices : t1_space (G ⧸ S), { exact @topological_group.regular_space _ _ _ _ this, },
suffices : t1_space (G ⧸ S), { exact @topological_group.t3_space _ _ _ _ this, },
have hS : is_closed (S : set G) := infer_instance,
rw ← quotient_group.ker_mk S at hS,
exact topological_group.t1_space (G ⧸ S) ((quotient_map_quotient_mk.is_closed_preimage).mp hS),
Expand Down
20 changes: 10 additions & 10 deletions src/topology/algebra/infinite_sum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -369,7 +369,7 @@ lemma summable.even_add_odd {f : ℕ → α} (he : summable (λ k, f (2 * k)))
summable f :=
(he.has_sum.even_add_odd ho.has_sum).summable

lemma has_sum.sigma [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α}
lemma has_sum.sigma [t3_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α}
(ha : has_sum f a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) : has_sum g a :=
begin
refine (at_top_basis.tendsto_iff (closed_nhds_basis a)).mpr _,
Expand All @@ -390,17 +390,17 @@ end

/-- If a series `f` on `β × γ` has sum `a` and for each `b` the restriction of `f` to `{b} × γ`
has sum `g b`, then the series `g` has sum `a`. -/
lemma has_sum.prod_fiberwise [regular_space α] {f : β × γ → α} {g : β → α} {a : α}
lemma has_sum.prod_fiberwise [t3_space α] {f : β × γ → α} {g : β → α} {a : α}
(ha : has_sum f a) (hf : ∀b, has_sum (λc, f (b, c)) (g b)) :
has_sum g a :=
has_sum.sigma ((equiv.sigma_equiv_prod β γ).has_sum_iff.2 ha) hf

lemma summable.sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
lemma summable.sigma' [t3_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(ha : summable f) (hf : ∀b, summable (λc, f ⟨b, c⟩)) :
summable (λb, ∑'c, f ⟨b, c⟩) :=
(ha.has_sum.sigma (assume b, (hf b).has_sum)).summable

lemma has_sum.sigma_of_has_sum [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α}
lemma has_sum.sigma_of_has_sum [t3_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α}
{a : α} (ha : has_sum g a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) (hf' : summable f) :
has_sum f a :=
by simpa [(hf'.has_sum.sigma hf).unique ha] using hf'.has_sum
Expand Down Expand Up @@ -525,16 +525,16 @@ lemma tsum_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (
∑'b, ∑ i in s, f i b = ∑ i in s, ∑'b, f i b :=
(has_sum_sum $ assume i hi, (hf i hi).has_sum).tsum_eq

lemma tsum_sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
lemma tsum_sigma' [t3_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(h₁ : ∀b, summable (λc, f ⟨b, c⟩)) (h₂ : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ :=
(h₂.has_sum.sigma (assume b, (h₁ b).has_sum)).tsum_eq.symm

lemma tsum_prod' [regular_space α] {f : β × γ → α} (h : summable f)
lemma tsum_prod' [t3_space α] {f : β × γ → α} (h : summable f)
(h₁ : ∀b, summable (λc, f (b, c))) :
∑'p, f p = ∑'b c, f (b, c) :=
(h.has_sum.prod_fiberwise (assume b, (h₁ b).has_sum)).tsum_eq.symm

lemma tsum_comm' [regular_space α] {f : β → γ → α} (h : summable (function.uncurry f))
lemma tsum_comm' [t3_space α] {f : β → γ → α} (h : summable (function.uncurry f))
(h₁ : ∀b, summable (f b)) (h₂ : ∀ c, summable (λ b, f b c)) :
∑' c b, f b c = ∑' b c, f b c :=
begin
Expand Down Expand Up @@ -1203,7 +1203,7 @@ begin
exact hde _ (h _ finset.sdiff_disjoint) _ (h _ finset.sdiff_disjoint) }
end

local attribute [instance] topological_add_group.regular_space
local attribute [instance] topological_add_group.t3_space

/-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
space. This does not need a summability assumption, as otherwise all sums are zero. -/
Expand Down Expand Up @@ -1503,7 +1503,7 @@ We first establish results about arbitrary index types, `β` and `γ`, and then

section tsum_mul_tsum

variables [topological_space α] [regular_space α] [non_unital_non_assoc_semiring α]
variables [topological_space α] [t3_space α] [non_unital_non_assoc_semiring α]
[topological_semiring α] {f : β → α} {g : γ → α} {s t u : α}

lemma has_sum.mul_eq (hf : has_sum f s) (hg : has_sum g t)
Expand Down Expand Up @@ -1556,7 +1556,7 @@ lemma summable_mul_prod_iff_summable_mul_sigma_antidiagonal {f g : ℕ → α} :
summable (λ x : (Σ (n : ℕ), nat.antidiagonal n), f (x.2 : ℕ × ℕ).1 * g (x.2 : ℕ × ℕ).2) :=
nat.sigma_antidiagonal_equiv_prod.summable_iff.symm

variables [regular_space α] [topological_semiring α]
variables [t3_space α] [topological_semiring α]

lemma summable_sum_mul_antidiagonal_of_summable_mul {f g : ℕ → α}
(h : summable (λ x : ℕ × ℕ, f x.1 * g x.2)) :
Expand Down
6 changes: 3 additions & 3 deletions src/topology/algebra/module/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2036,11 +2036,11 @@ begin
exact continuous_quot_mk.comp continuous_smul
end

instance regular_quotient_of_is_closed [topological_add_group M] [is_closed (S : set M)] :
regular_space (M ⧸ S) :=
instance t3_quotient_of_is_closed [topological_add_group M] [is_closed (S : set M)] :
t3_space (M ⧸ S) :=
begin
letI : is_closed (S.to_add_subgroup : set M) := ‹_›,
exact S.to_add_subgroup.regular_quotient_of_is_closed
exact S.to_add_subgroup.t3_quotient_of_is_closed
end

end submodule
Expand Down
2 changes: 1 addition & 1 deletion src/topology/algebra/order/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1083,7 +1083,7 @@ lemma dense_iff_exists_between [densely_ordered α] [nontrivial α] {s : set α}
lemma order_topology.t2_space : t2_space α := by apply_instance

@[priority 100] -- see Note [lower instance priority]
instance order_topology.regular_space : regular_space α :=
instance order_topology.t3_space : t3_space α :=
{ regular := assume s a hs ha,
have hs' : sᶜ ∈ 𝓝 a, from is_open.mem_nhds hs.is_open_compl ha,
have ∃t:set α, is_open t ∧ (∀l∈ s, l < a → l ∈ t) ∧ 𝓝[t] a = ⊥,
Expand Down
6 changes: 3 additions & 3 deletions src/topology/algebra/order/extend_from.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ universes u v
variables {α : Type u} {β : Type v}

lemma continuous_on_Icc_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α]
[order_topology α] [topological_space β] [regular_space β] {f : α → β} {a b : α}
[order_topology α] [topological_space β] [t3_space β] {f : α → β} {a b : α}
{la lb : β} (hab : a ≠ b) (hf : continuous_on f (Ioo a b))
(ha : tendsto f (𝓝[>] a) (𝓝 la)) (hb : tendsto f (𝓝[<] b) (𝓝 lb)) :
continuous_on (extend_from (Ioo a b) f) (Icc a b) :=
Expand Down Expand Up @@ -55,7 +55,7 @@ end

lemma continuous_on_Ico_extend_from_Ioo [topological_space α]
[linear_order α] [densely_ordered α] [order_topology α] [topological_space β]
[regular_space β] {f : α → β} {a b : α} {la : β} (hab : a < b) (hf : continuous_on f (Ioo a b))
[t3_space β] {f : α → β} {a b : α} {la : β} (hab : a < b) (hf : continuous_on f (Ioo a b))
(ha : tendsto f (𝓝[>] a) (𝓝 la)) :
continuous_on (extend_from (Ioo a b) f) (Ico a b) :=
begin
Expand All @@ -70,7 +70,7 @@ end

lemma continuous_on_Ioc_extend_from_Ioo [topological_space α]
[linear_order α] [densely_ordered α] [order_topology α] [topological_space β]
[regular_space β] {f : α → β} {a b : α} {lb : β} (hab : a < b) (hf : continuous_on f (Ioo a b))
[t3_space β] {f : α → β} {a b : α} {lb : β} (hab : a < b) (hf : continuous_on f (Ioo a b))
(hb : tendsto f (𝓝[<] b) (𝓝 lb)) :
continuous_on (extend_from (Ioo a b) f) (Ioc a b) :=
begin
Expand Down
2 changes: 1 addition & 1 deletion src/topology/algebra/uniform_field.lean
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def hat_inv : hat K → hat K := dense_inducing_coe.extend (λ x : K, (coe x⁻
lemma continuous_hat_inv [completable_top_field K] {x : hat K} (h : x ≠ 0) :
continuous_at hat_inv x :=
begin
haveI : regular_space (hat K) := completion.regular_space K,
haveI : t3_space (hat K) := completion.t3_space K,
refine dense_inducing_coe.continuous_at_extend _,
apply mem_of_superset (compl_singleton_mem_nhds h),
intros y y_ne,
Expand Down
2 changes: 1 addition & 1 deletion src/topology/algebra/valued_field.lean
Original file line number Diff line number Diff line change
Expand Up @@ -283,7 +283,7 @@ end
@[simp, norm_cast]
lemma extension_extends (x : K) : extension (x : hat K) = v x :=
begin
haveI : t2_space Γ₀ := regular_space.t2_space _,
haveI : t2_space Γ₀ := t3_space.t2_space _,
refine completion.dense_inducing_coe.extend_eq_of_tendsto _,
rw ← completion.dense_inducing_coe.nhds_eq_comap,
exact valued.continuous_valuation.continuous_at,
Expand Down
8 changes: 4 additions & 4 deletions src/topology/algebra/with_zero_topology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ In particular the topology is the following:
`γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ U`", but this fact is not proven here since the neighborhoods
description is what is actually useful.
We prove this topology is ordered and regular (in addition to be compatible with the monoid
We prove this topology is ordered and T₃ (in addition to be compatible with the monoid
structure).
All this is useful to extend a valuation to a completion. This is an abstract version of how the
Expand All @@ -29,7 +29,7 @@ absolute value (resp. `p`-adic absolute value) on `ℚ` is extended to `ℝ` (re
This topology is not defined as an instance since it may not be the desired topology on
a linearly ordered commutative group with zero. You can locally activate this topology using
`local attribute [instance] linear_ordered_comm_group_with_zero.topological_space`
All other instances will (`ordered_topology`, `regular_space`, `has_continuous_mul`) then follow.
All other instances will (`ordered_topology`, `t3_space`, `has_continuous_mul`) then follow.
-/

Expand Down Expand Up @@ -209,9 +209,9 @@ instance ordered_topology : order_closed_topology Γ₀ :=
rwa [h1, h2] }
end }

/-- The topology on a linearly ordered group with zero element adjoined is T₃ (aka regular). -/
/-- The topology on a linearly ordered group with zero element adjoined is T₃. -/
@[priority 100]
instance regular_space : regular_space Γ₀ :=
instance t3_space : t3_space Γ₀ :=
begin
haveI : t1_space Γ₀ := t2_space.t1_space,
split,
Expand Down
10 changes: 5 additions & 5 deletions src/topology/dense_embedding.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ This file defines three properties of functions:
* `dense_embedding e` means `e` is also an `embedding`.
The main theorem `continuous_extend` gives a criterion for a function
`f : X → Z` to a regular (T₃) space Z to extend along a dense embedding
`f : X → Z` to a T₃ space Z to extend along a dense embedding
`i : X → Y` to a continuous function `g : Y → Z`. Actually `i` only
has to be `dense_inducing` (not necessarily injective).
Expand Down Expand Up @@ -179,7 +179,7 @@ lemma extend_unique [t2_space γ] {f : α → γ} {g : β → γ} (di : dense_in
di.extend f = g :=
funext $ λ b, extend_unique_at di (eventually_of_forall hf) hg.continuous_at

lemma continuous_at_extend [regular_space γ] {b : β} {f : α → γ} (di : dense_inducing i)
lemma continuous_at_extend [t3_space γ] {b : β} {f : α → γ} (di : dense_inducing i)
(hf : ∀ᶠ x in 𝓝 b, ∃c, tendsto f (comap i $ 𝓝 x) (𝓝 c)) :
continuous_at (di.extend f) b :=
begin
Expand All @@ -206,7 +206,7 @@ begin
tauto,
end

lemma continuous_extend [regular_space γ] {f : α → γ} (di : dense_inducing i)
lemma continuous_extend [t3_space γ] {f : α → γ} (di : dense_inducing i)
(hf : ∀b, ∃c, tendsto f (comap i (𝓝 b)) (𝓝 c)) : continuous (di.extend f) :=
continuous_iff_continuous_at.mpr $ assume b, di.continuous_at_extend $ univ_mem' hf

Expand Down Expand Up @@ -338,9 +338,9 @@ lemma dense_range.equalizer (hfd : dense_range f)
funext $ λ y, hfd.induction_on y (is_closed_eq hg hh) $ congr_fun H
end

-- Bourbaki GT III §3 no.4 Proposition 7 (generalised to any dense-inducing map to a regular space)
-- Bourbaki GT III §3 no.4 Proposition 7 (generalised to any dense-inducing map to a T₃ space)
lemma filter.has_basis.has_basis_of_dense_inducing
[topological_space α] [topological_space β] [regular_space β]
[topological_space α] [topological_space β] [t3_space β]
{ι : Type*} {s : ι → set α} {p : ι → Prop} {x : α} (h : (𝓝 x).has_basis p s)
{f : α → β} (hf : dense_inducing f) :
(𝓝 (f x)).has_basis p $ λ i, closure $ f '' (s i) :=
Expand Down
10 changes: 5 additions & 5 deletions src/topology/extend_from.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ This is analoguous to the way `dense_inducing.extend` "extends" a function
The main theorem we prove about this definition is `continuous_on_extend_from`
which states that, for `extend_from A f` to be continuous on a set `B ⊆ closure A`,
it suffices that `f` converges within `A` at any point of `B`, provided that
`f` is a function to a regular space.
`f` is a function to a T₃ space.
-/

Expand Down Expand Up @@ -52,9 +52,9 @@ lemma extend_from_extends [t2_space Y] {f : X → Y} {A : set X} (hf : continuou
∀ x ∈ A, extend_from A f x = f x :=
λ x x_in, extend_from_eq (subset_closure x_in) (hf x x_in)

/-- If `f` is a function to a regular space `Y` which has a limit within `A` at any
/-- If `f` is a function to a T₃ space `Y` which has a limit within `A` at any
point of a set `B ⊆ closure A`, then `extend_from A f` is continuous on `B`. -/
lemma continuous_on_extend_from [regular_space Y] {f : X → Y} {A B : set X} (hB : B ⊆ closure A)
lemma continuous_on_extend_from [t3_space Y] {f : X → Y} {A B : set X} (hB : B ⊆ closure A)
(hf : ∀ x ∈ B, ∃ y, tendsto f (𝓝[A] x) (𝓝 y)) : continuous_on (extend_from A f) B :=
begin
set φ := extend_from A f,
Expand All @@ -77,9 +77,9 @@ begin
exact V'_closed.mem_of_tendsto limy (mem_of_superset this hV)
end

/-- If a function `f` to a regular space `Y` has a limit within a
/-- If a function `f` to a T₃ space `Y` has a limit within a
dense set `A` for any `x`, then `extend_from A f` is continuous. -/
lemma continuous_extend_from [regular_space Y] {f : X → Y} {A : set X} (hA : dense A)
lemma continuous_extend_from [t3_space Y] {f : X → Y} {A : set X} (hA : dense A)
(hf : ∀ x, ∃ y, tendsto f (𝓝[A] x) (𝓝 y)) : continuous (extend_from A f) :=
begin
rw continuous_iff_continuous_on_univ,
Expand Down
4 changes: 2 additions & 2 deletions src/topology/homeomorph.lean
Original file line number Diff line number Diff line change
Expand Up @@ -196,8 +196,8 @@ h.symm.embedding.t1_space
protected lemma t2_space [t2_space α] (h : α ≃ₜ β) : t2_space β :=
h.symm.embedding.t2_space

protected lemma regular_space [regular_space α] (h : α ≃ₜ β) : regular_space β :=
h.symm.embedding.regular_space
protected lemma t3_space [t3_space α] (h : α ≃ₜ β) : t3_space β :=
h.symm.embedding.t3_space

protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h :=
{ dense := h.surjective.dense_range,
Expand Down
16 changes: 8 additions & 8 deletions src/topology/metric_space/metrizable.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@ import topology.urysohns_lemma
import topology.continuous_function.bounded

/-!
# Metrizability of a regular topological space with second countable topology
# Metrizability of a T₃ topological space with second countable topology
In this file we define metrizable topological spaces, i.e., topological spaces for which there
exists a metric space structure that generates the same topology.
We also show that a regular topological space with second countable topology `X` is metrizable.
We also show that a T₃ topological space with second countable topology `X` is metrizable.
First we prove that `X` can be embedded into `l^∞`, then use this embedding to pull back the metric
space structure.
Expand Down Expand Up @@ -119,13 +119,13 @@ embedding_subtype_coe.metrizable_space
instance metrizable_space_pi [Π i, metrizable_space (π i)] : metrizable_space (Π i, π i) :=
by { letI := λ i, metrizable_space_metric (π i), apply_instance }

variables (X) [regular_space X] [second_countable_topology X]
variables (X) [t3_space X] [second_countable_topology X]

/-- A regular topological space with second countable topology can be embedded into `l^∞ = ℕ →ᵇ ℝ`.
/-- A T₃ topological space with second countable topology can be embedded into `l^∞ = ℕ →ᵇ ℝ`.
-/
lemma exists_embedding_l_infty : ∃ f : X → (ℕ →ᵇ ℝ), embedding f :=
begin
haveI : normal_space X := normal_space_of_regular_second_countable X,
haveI : normal_space X := normal_space_of_t3_second_countable X,
-- Choose a countable basis, and consider the set `s` of pairs of set `(U, V)` such that `U ∈ B`,
-- `V ∈ B`, and `closure U ⊆ V`.
rcases exists_countable_basis X with ⟨B, hBc, -, hB⟩,
Expand Down Expand Up @@ -203,12 +203,12 @@ begin
exacts [hy _ hle, (real.dist_le_of_mem_Icc (hf0ε _ _) (hf0ε _ _)).trans (by rwa sub_zero)] }
end

/-- *Urysohn's metrization theorem* (Tychonoff's version): a regular topological space with second
/-- *Urysohn's metrization theorem* (Tychonoff's version): a T₃ topological space with second
countable topology `X` is metrizable, i.e., there exists a metric space structure that generates the
same topology. -/
lemma metrizable_space_of_regular_second_countable : metrizable_space X :=
lemma metrizable_space_of_t3_second_countable : metrizable_space X :=
let ⟨f, hf⟩ := exists_embedding_l_infty X in hf.metrizable_space

instance : metrizable_space ennreal := metrizable_space_of_regular_second_countable ennreal
instance : metrizable_space ennreal := metrizable_space_of_t3_second_countable ennreal

end topological_space
Loading

0 comments on commit ede73b2

Please sign in to comment.