Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(data/nat/prime): prime.dvd_prod_iff; golf mem_list_primes_of_dvd_prod #10624

Closed
wants to merge 15 commits into from
Closed
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions src/algebra/associated.lean
Original file line number Diff line number Diff line change
Expand Up @@ -719,3 +719,25 @@ dvd_and_not_dvd_iff.symm
end cancel_comm_monoid_with_zero

end associates

namespace multiset

lemma prod_ne_zero_of_prime [comm_cancel_monoid_with_zero α] [nontrivial α]
(s : multiset α) (h : ∀ x ∈ s, prime x) : s.prod ≠ 0 :=
multiset.prod_ne_zero (λ h0, prime.ne_zero (h 0 h0) rfl)

end multiset

/-- Prime `p` divides the product of a list `L` iff it divides some `a ∈ L` -/
lemma prime.dvd_prod_iff {M : Type*} [comm_monoid_with_zero M] {p : M} {L : list M} (pp : prime p) :
p ∣ L.prod ↔ ∃ a ∈ L, p ∣ a :=
begin
split,
{ intros h,
induction L,
{ simp only [list.prod_nil] at h, exact absurd h (prime.not_dvd_one pp) },
{ rw list.prod_cons at h,
cases (prime.dvd_or_dvd pp) h, { use L_hd, simp [h_1] },
{ rcases L_ih h_1 with ⟨x, hx1, hx2⟩, use x, simp [list.mem_cons_iff, hx1, hx2] } } },
{ exact λ ⟨a, ha1, ha2⟩, dvd_trans ha2 (list.dvd_prod ha1) },
end
35 changes: 25 additions & 10 deletions src/data/nat/prime.lean
Original file line number Diff line number Diff line change
Expand Up @@ -490,6 +490,25 @@ theorem prime.not_dvd_mul {p m n : ℕ} (pp : prime p)
(Hm : ¬ p ∣ m) (Hn : ¬ p ∣ n) : ¬ p ∣ m * n :=
mt pp.dvd_mul.1 $ by simp [Hm, Hn]

/-- Prime `p` divides the product of `L : list ℕ` iff it divides some `a ∈ L` -/
lemma prime.dvd_prod_iff {p : ℕ} {L : list ℕ} (pp : p.prime) :
p ∣ L.prod ↔ ∃ a ∈ L, p ∣ a :=
begin
split,
{ intros h,
induction L,
{ simp only [list.prod_nil] at h, exact absurd h (prime.not_dvd_one pp) },
{ rw list.prod_cons at h,
cases (prime.dvd_mul pp).mp h,
{ use L_hd, simp [h_1] },
{ rcases L_ih h_1 with ⟨x, hx1, hx2⟩, use x, simp [list.mem_cons_iff, hx1, hx2] } } },
{ exact λ ⟨a, ha1, ha2⟩, dvd_trans ha2 (list.dvd_prod ha1) },
end

lemma prime.not_dvd_prod {p : ℕ} {L : list ℕ} (pp : prime p) (hL : ∀ a ∈ L, ¬ p ∣ a) :
¬ p ∣ L.prod :=
mt (prime.dvd_prod_iff pp).mp (not_bex.mpr hL)

theorem prime.dvd_of_dvd_pow {p m n : ℕ} (pp : prime p) (h : p ∣ m^n) : p ∣ m :=
begin
induction n with n IH,
Expand Down Expand Up @@ -641,16 +660,12 @@ section
open list

lemma mem_list_primes_of_dvd_prod {p : ℕ} (hp : prime p) :
∀ {l : list ℕ}, (∀ p ∈ l, prime p) → p ∣ prod l → p ∈ l
| [] := λ h₁ h₂, absurd h₂ (prime.not_dvd_one hp)
| (q :: l) := λ h₁ h₂,
have h₃ : p ∣ q * prod l := @prod_cons _ _ l q ▸ h₂,
have hq : prime q := h₁ q (mem_cons_self _ _),
or.cases_on ((prime.dvd_mul hp).1 h₃)
(λ h, by rw [prime.dvd_iff_not_coprime hp, coprime_primes hp hq, ne.def, not_not] at h;
exact h ▸ mem_cons_self _ _)
(λ h, have hl : ∀ p ∈ l, prime p := λ p hlp, h₁ p ((mem_cons_iff _ _ _).2 (or.inr hlp)),
(mem_cons_iff _ _ _).2 (or.inr (mem_list_primes_of_dvd_prod hl h)))
∀ {l : list ℕ}, (∀ p ∈ l, prime p) → p ∣ prod l → p ∈ l :=
begin
intros L hL hpL,
rcases (prime.dvd_prod_iff hp).mp hpL with ⟨x, hx1, hx2⟩,
rwa ((prime_dvd_prime_iff_eq hp (hL x hx1)).mp hx2)
end

lemma mem_factors_iff_dvd {n p : ℕ} (hn : 0 < n) (hp : prime p) : p ∈ factors n ↔ p ∣ n :=
⟨λ h, prod_factors hn ▸ list.dvd_prod h,
Expand Down