Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore(category_theory/limits/types): remove simp lemmas #3604

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
24 changes: 14 additions & 10 deletions src/category_theory/limits/types.lean
Original file line number Diff line number Diff line change
Expand Up @@ -29,19 +29,23 @@ instance : has_limits (Type u) :=
{ has_limits_of_shape := λ J 𝒥,
{ has_limit := λ F, by exactI { cone := limit_ F, is_limit := limit_is_limit_ F } } }

@[simp] lemma types_limit (F : J ⥤ Type u) :

-- We don't make any of these `simp` lemmas:
-- it's up to the user to decide to stop using the limits API,
-- and rely on the particular implementation.
lemma types_limit (F : J ⥤ Type u) :
limits.limit F = {u : Π j, F.obj j // ∀ {j j'} f, F.map f (u j) = u j'} := rfl
@[simp] lemma types_limit_π (F : J ⥤ Type u) (j : J) (g : limit F) :
lemma types_limit_π (F : J ⥤ Type u) (j : J) (g : limit F) :
limit.π F j g = g.val j := rfl
@[simp] lemma types_limit_pre
lemma types_limit_pre
(F : J ⥤ Type u) {K : Type u} [𝒦 : small_category K] (E : K ⥤ J) (g : limit F) :
limit.pre F E g = (⟨λ k, g.val (E.obj k), by obviously⟩ : limit (E ⋙ F)) := rfl
@[simp] lemma types_limit_map {F G : J ⥤ Type u} (α : F ⟶ G) (g : limit F) :
lemma types_limit_map {F G : J ⥤ Type u} (α : F ⟶ G) (g : limit F) :
(lim.map α : limit F → limit G) g =
(⟨λ j, (α.app j) (g.val j), λ j j' f,
by {rw ←functor_to_types.naturality, dsimp, rw ←(g.prop f)}⟩ : limit G) := rfl

@[simp] lemma types_limit_lift (F : J ⥤ Type u) (c : cone F) (x : c.X) :
lemma types_limit_lift (F : J ⥤ Type u) (c : cone F) (x : c.X) :
limit.lift F c x = (⟨λ j, c.π.app j x, λ j j' f, congr_fun (cone.w c f) x⟩ : limit F) :=
rfl

Expand All @@ -63,21 +67,21 @@ instance : has_colimits (Type u) :=
{ has_colimits_of_shape := λ J 𝒥,
{ has_colimit := λ F, by exactI { cocone := colimit_ F, is_colimit := colimit_is_colimit_ F } } }

@[simp] lemma types_colimit (F : J ⥤ Type u) :
lemma types_colimit (F : J ⥤ Type u) :
limits.colimit F = @quot (Σ j, F.obj j) (λ p p', ∃ f : p.1 ⟶ p'.1, p'.2 = F.map f p.2) := rfl
@[simp] lemma types_colimit_ι (F : J ⥤ Type u) (j : J) :
lemma types_colimit_ι (F : J ⥤ Type u) (j : J) :
colimit.ι F j = λ x, quot.mk _ ⟨j, x⟩ := rfl
@[simp] lemma types_colimit_pre
lemma types_colimit_pre
(F : J ⥤ Type u) {K : Type u} [𝒦 : small_category K] (E : K ⥤ J) :
colimit.pre F E =
quot.lift (λ p, quot.mk _ ⟨E.obj p.1, p.2⟩) (λ p p' ⟨f, h⟩, quot.sound ⟨E.map f, h⟩) := rfl
@[simp] lemma types_colimit_map {F G : J ⥤ Type u} (α : F ⟶ G) :
lemma types_colimit_map {F G : J ⥤ Type u} (α : F ⟶ G) :
(colim.map α : colimit F → colimit G) =
quot.lift
(λ p, quot.mk _ ⟨p.1, (α.app p.1) p.2⟩)
(λ p p' ⟨f, h⟩, quot.sound ⟨f, by rw h; exact functor_to_types.naturality _ _ α f _⟩) := rfl

@[simp] lemma types_colimit_desc (F : J ⥤ Type u) (c : cocone F) :
lemma types_colimit_desc (F : J ⥤ Type u) (c : cocone F) :
colimit.desc F c =
quot.lift
(λ p, c.ι.app p.1 p.2)
Expand Down