Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(analysis/calculus/times_cont_diff): add restrict_scalars #4899

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
56 changes: 56 additions & 0 deletions src/analysis/calculus/times_cont_diff.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2698,3 +2698,59 @@ lemma times_cont_diff_on.continuous_on_deriv_of_open {n : with_top ℕ}
((times_cont_diff_on_succ_iff_deriv_of_open hs).1 (h.of_le hn)).2.continuous_on

end deriv

section restrict_scalars
/-!
### Restricting from `ℂ` to `ℝ`, or generally from `𝕜'` to `𝕜`

If a function is `n` times continuously differentiable over `ℂ`, then it is `n` times continuously
differentiable over `ℝ`. In this paragraph, we give variants of this statement, in the general
situation where `ℂ` and `ℝ` are replaced respectively by `𝕜'` and `𝕜` where `𝕜'` is a normed algebra
over `𝕜`.
-/

variables (𝕜) {𝕜' : Type*} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
variables [normed_space 𝕜' E] [is_scalar_tower 𝕜 𝕜' E]
variables [normed_space 𝕜' F] [is_scalar_tower 𝕜 𝕜' F]
variables {p' : E → formal_multilinear_series 𝕜' E F} {n : with_top ℕ}

/-- Reinterpret a formal `𝕜'`-multilinear series as a formal `𝕜`-multilinear series, where `𝕜'` is a
normed algebra over `𝕜`. -/
@[simp] def formal_multilinear_series.restrict_scalars (p : formal_multilinear_series 𝕜' E F) :
formal_multilinear_series 𝕜 E F :=
λ n, (p n).restrict_scalars 𝕜

lemma has_ftaylor_series_up_to_on.restrict_scalars
(h : has_ftaylor_series_up_to_on n f p' s) :
has_ftaylor_series_up_to_on n f (λ x, (p' x).restrict_scalars 𝕜) s :=
{ zero_eq := λ x hx, h.zero_eq x hx,
fderiv_within :=
begin
intros m hm x hx,
convert ((continuous_multilinear_map.restrict_scalars_linear 𝕜).has_fderiv_at)
.comp_has_fderiv_within_at _ ((h.fderiv_within m hm x hx).restrict_scalars 𝕜),
end,
cont := λ m hm, continuous_multilinear_map.continuous_restrict_scalars.comp_continuous_on
(h.cont m hm) }

lemma times_cont_diff_within_at.restrict_scalars (h : times_cont_diff_within_at 𝕜' n f s x) :
times_cont_diff_within_at 𝕜 n f s x :=
begin
intros m hm,
rcases h m hm with ⟨u, u_mem, p', hp'⟩,
exact ⟨u, u_mem, _, hp'.restrict_scalars _⟩
end

lemma times_cont_diff_on.restrict_scalars (h : times_cont_diff_on 𝕜' n f s) :
times_cont_diff_on 𝕜 n f s :=
λ x hx, (h x hx).restrict_scalars _

lemma times_cont_diff_at.restrict_scalars (h : times_cont_diff_at 𝕜' n f x) :
times_cont_diff_at 𝕜 n f x :=
times_cont_diff_within_at_univ.1 $ h.times_cont_diff_within_at.restrict_scalars _

lemma times_cont_diff.restrict_scalars (h : times_cont_diff 𝕜' n f) :
times_cont_diff 𝕜 n f :=
times_cont_diff_iff_times_cont_diff_at.2 $ λ x, h.times_cont_diff_at.restrict_scalars _

end restrict_scalars