Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(linear_algebra/pi_tensor_product): define the tensor product of an indexed family of semimodules #5311

Closed
wants to merge 46 commits into from
Closed
Changes from 45 commits
Commits
Show all changes
46 commits
Select commit Hold shift + click to select a range
205e946
add pi_tensor_product.lean
dupuisf Dec 10, 2020
56ceca9
some progress
dupuisf Dec 10, 2020
1016998
prove semimodule instance
dupuisf Dec 10, 2020
c3db194
small changes
dupuisf Dec 10, 2020
2a5f055
connection with multilinear maps, not finished
dupuisf Dec 10, 2020
cb5d5f1
documentation
dupuisf Dec 10, 2020
647e28a
placate 100-char-per-line linter
dupuisf Dec 10, 2020
c3d1d15
a few more todos
dupuisf Dec 10, 2020
8243a2b
nonempty -> inhabited
dupuisf Dec 10, 2020
8157c3b
add hidden R factor to deal with empty iota
dupuisf Dec 11, 2020
d8da4a3
prove semimodule instance for version with extra R
dupuisf Dec 11, 2020
b049492
defined tprod in terms of tprod_coef
dupuisf Dec 11, 2020
fb9c0b9
now it compiles again
dupuisf Dec 11, 2020
d5337bc
100 char linter
dupuisf Dec 12, 2020
90f8af8
lemmas for ring case
dupuisf Dec 12, 2020
c1858fd
Merge branch 'master' into pi_tensor_product
dupuisf Dec 12, 2020
3d721b6
add comment about requiring comm_ring
dupuisf Dec 12, 2020
59a6a5e
define lift_add_hom to avoid this lift manually twice
dupuisf Dec 12, 2020
0a44f0a
documentation
dupuisf Dec 13, 2020
30a0893
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 16, 2020
f4329df
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 16, 2020
f0d36d4
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 16, 2020
aadfc8c
coef -> coeff
dupuisf Dec 16, 2020
3a282cb
100 chars
dupuisf Dec 16, 2020
2c33be8
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 17, 2020
a43a7a5
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 17, 2020
687ff3e
lift as an add_equiv
dupuisf Dec 17, 2020
3b90835
Merge branch 'master' into pi_tensor_product
dupuisf Dec 17, 2020
84055b2
use map_neg
dupuisf Dec 17, 2020
88c1aa0
Merge together tprod and mk, and remove all the then-redundant lemmas
eric-wieser Dec 18, 2020
9706bcd
fix unused argument linter error in multilinear.lean
dupuisf Dec 18, 2020
a92f5ad
update module-level doc
dupuisf Dec 18, 2020
98e8545
add warning against using tprod_coeff
dupuisf Dec 18, 2020
c75291e
Update src/linear_algebra/multilinear.lean
dupuisf Dec 29, 2020
90edfdd
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 29, 2020
f9542e5
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 29, 2020
6d34517
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 29, 2020
13f551a
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 29, 2020
6237a58
Update src/linear_algebra/pi_tensor_product.lean
dupuisf Dec 29, 2020
9c76a0a
fix build + typo in docs
dupuisf Dec 29, 2020
b8b192a
Merge branch 'master' into pi_tensor_product
dupuisf Dec 29, 2020
7b3be80
scalar tower
dupuisf Dec 29, 2020
c261010
fix
dupuisf Dec 29, 2020
5e3fa95
linter
dupuisf Dec 29, 2020
1b8ef90
Merge branch 'master' into pi_tensor_product
dupuisf Jan 3, 2021
d140385
delete useless smul_zero lemma
dupuisf Jan 7, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
385 changes: 385 additions & 0 deletions src/linear_algebra/pi_tensor_product.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,385 @@
/-
Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/

import group_theory.congruence
import linear_algebra.multilinear

/-!
# Tensor product of an indexed family of semimodules over commutative semirings

We define the tensor product of an indexed family `s : ι → Type*` of semimodules over commutative
semirings. We denote this space by `⨂[R] i, s i` and define it as `free_add_monoid (R × Π i, s i)`
quotiented by the appropriate equivalence relation. The treatment follows very closely that of the
binary tensor product in `linear_algebra/tensor_product.lean`.

## Main definitions

* `pi_tensor_product R s` with `R` a commutative semiring and `s : ι → Type*` is the tensor product
of all the `s i`'s. This is denoted by `⨂[R] i, s i`.
* `tprod R f` with `f : Π i, s i` is the tensor product of the vectors `f i` over all `i : ι`.
This is bundled as a multilinear map from `Π i, s i` to `⨂[R] i, s i`.
* `lift_add_hom` constructs an `add_monoid_hom` from `(⨂[R] i, s i)` to some space `F` from a
function `φ : (R × Π i, s i) → F` with the appropriate properties.
* `lift φ` with `φ : multilinear_map R s E` is the corresponding linear map
`(⨂[R] i, s i) →ₗ[R] E`. This is bundled as a linear equivalence.

## Notations

* `⨂[R] i, s i` is defined as localized notation in locale `tensor_product`
* `⨂ₜ[R] i, f i` with `f : Π i, f i` is defined globally as the tensor product of all the `f i`'s.

## Implementation notes

* We define it via `free_add_monoid (R × Π i, s i)` with the `R` representing a "hidden" tensor
factor, rather than `free_add_monoid (Π i, s i)` to ensure that, if `ι` is an empty type,
the space is isomorphic to the base ring `R`.
* We have not restricted the index type `ι` to be a `fintype`, as nothing we do here strictly
requires it. However, problems may arise in the case where `ι` is infinite; use at your own
caution.

## TODO

* Define tensor powers, symmetric subspace, etc.
dupuisf marked this conversation as resolved.
Show resolved Hide resolved
* API for the various ways `ι` can be split into subsets; connect this with the binary
tensor product.
* Include connection with holors.
* Port more of the API from the binary tensor product over to this case.

## Tags

multilinear, tensor, tensor product
-/

noncomputable theory
open_locale classical
open function

section semiring

variables {ι : Type*} {R : Type*} [comm_semiring R]
variables {R' : Type*} [comm_semiring R'] [algebra R' R]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Requiring algebra feels quite strict here. Was is_scalar_tower not enough?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I could probably do it with [semimodule R' R] [is_scalar_tower R' R R], but isn't that just equivalent to algebra anyway?

variables {s : ι → Type*} [∀ i, add_comm_monoid (s i)] [∀ i, semimodule R (s i)]
variables {E : Type*} [add_comm_monoid E] [semimodule R E]
variables {F : Type*} [add_comm_monoid F]

namespace pi_tensor_product
include R
variables (R) (s)

/-- The relation on `free_add_monoid (R × Π i, s i)` that generates a congruence whose quotient is
the tensor product. -/
inductive eqv : free_add_monoid (R × Π i, s i) → free_add_monoid (R × Π i, s i) → Prop
| of_zero : ∀ (r : R) (f : Π i, s i) (i : ι) (hf : f i = 0), eqv (free_add_monoid.of (r, f)) 0
| of_zero_scalar : ∀ (f : Π i, s i), eqv (free_add_monoid.of (0, f)) 0
| of_add : ∀ (r : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i), eqv
(free_add_monoid.of (r, update f i m₁) + free_add_monoid.of (r, update f i m₂))
(free_add_monoid.of (r, update f i (m₁ + m₂)))
| of_add_scalar : ∀ (r r' : R) (f : Π i, s i), eqv
(free_add_monoid.of (r, f) + free_add_monoid.of (r', f))
(free_add_monoid.of (r + r', f))
| of_smul : ∀ (r : R) (f : Π i, s i) (i : ι) (r' : R), eqv
(free_add_monoid.of (r, update f i (r' • (f i))))
(free_add_monoid.of (r' * r, f))
| add_comm : ∀ x y, eqv (x + y) (y + x)

end pi_tensor_product

variables (R) (s)

/-- `pi_tensor_product R s` with `R` a commutative semiring and `s : ι → Type*` is the tensor
product of all the `s i`'s. This is denoted by `⨂[R] i, s i`. -/
def pi_tensor_product : Type* :=
(add_con_gen (pi_tensor_product.eqv R s)).quotient

variables {R}

/- This enables the notation `⨂[R] i : ι, s i` for the pi tensor product, given `s : ι → Type*`. -/
localized "notation `⨂[`:100 R `] ` binders `, ` r:(scoped:67 f, pi_tensor_product R f) := r"
in tensor_product

open_locale tensor_product

namespace pi_tensor_product

section module

instance : add_comm_monoid (⨂[R] i, s i) :=
{ add_comm := λ x y, add_con.induction_on₂ x y $ λ x y, quotient.sound' $
add_con_gen.rel.of _ _ $ eqv.add_comm _ _,
.. (add_con_gen (pi_tensor_product.eqv R s)).add_monoid }

instance : inhabited (⨂[R] i, s i) := ⟨0⟩

variables (R) {s}

/-- `tprod_coeff R r f` with `r : R` and `f : Π i, s i` is the tensor product of the vectors `f i`
over all `i : ι`, multiplied by the coefficient `r`. Note that this is meant as an auxiliary
definition for this file alone, and that one should use `tprod` defined below for most purposes. -/
def tprod_coeff (r : R) (f : Π i, s i) : ⨂[R] i, s i := add_con.mk' _ $ free_add_monoid.of (r, f)

variables {R}

lemma zero_tprod_coeff (f : Π i, s i) : tprod_coeff R 0 f = 0 :=
dupuisf marked this conversation as resolved.
Show resolved Hide resolved
quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero_scalar _

lemma zero_tprod_coeff' (z : R) (f : Π i, s i) (i : ι) (hf: f i = 0) : tprod_coeff R z f = 0 :=
quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero _ _ i hf

lemma add_tprod_coeff (z : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i) :
tprod_coeff R z (update f i m₁) + tprod_coeff R z (update f i m₂) =
tprod_coeff R z (update f i (m₁ + m₂)) :=
quotient.sound' $ add_con_gen.rel.of _ _ (eqv.of_add z f i m₁ m₂)

lemma add_tprod_coeff' (z₁ z₂ : R) (f : Π i, s i) :
tprod_coeff R z₁ f + tprod_coeff R z₂ f = tprod_coeff R (z₁ + z₂) f :=
quotient.sound' $ add_con_gen.rel.of _ _ (eqv.of_add_scalar z₁ z₂ f)

lemma smul_tprod_coeff_aux (z : R) (f : Π i, s i) (i : ι) (r : R) :
tprod_coeff R z (update f i (r • f i)) = tprod_coeff R (r * z) f :=
quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_smul _ _ _ _

lemma smul_tprod_coeff (z : R) (f : Π i, s i) (i : ι) (r : R')
[semimodule R' (s i)] [is_scalar_tower R' R (s i)] :
tprod_coeff R z (update f i (r • f i)) = tprod_coeff R (r • z) f :=
begin
have h₁ : r • z = (r • (1 : R)) * z := by simp,
have h₂ : r • (f i) = (r • (1 : R)) • f i := by simp,
rw [h₁, h₂],
exact smul_tprod_coeff_aux z f i _,
end

/-- Construct an `add_monoid_hom` from `(⨂[R] i, s i)` to some space `F` from a function
`φ : (R × Π i, s i) → F` with the appropriate properties. -/
def lift_add_hom (φ : (R × Π i, s i) → F)
dupuisf marked this conversation as resolved.
Show resolved Hide resolved
(C0 : ∀ (r : R) (f : Π i, s i) (i : ι) (hf : f i = 0), φ (r, f) = 0)
(C0' : ∀ (f : Π i, s i), φ (0, f) = 0)
(C_add : ∀ (r : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)))
(C_add_scalar : ∀ (r r' : R) (f : Π i, s i),
φ (r , f) + φ (r', f) = φ (r + r', f))
(C_smul : ∀ (r : R) (f : Π i, s i) (i : ι) (r' : R),
φ (r, update f i (r' • (f i))) = φ (r' * r, f))
: (⨂[R] i, s i) →+ F :=
(add_con_gen (pi_tensor_product.eqv R s)).lift (free_add_monoid.lift φ) $ add_con.add_con_gen_le $
λ x y hxy, match x, y, hxy with
| _, _, (eqv.of_zero r' f i hf) := (add_con.ker_rel _).2 $
by simp [free_add_monoid.lift_eval_of, C0 r' f i hf]
| _, _, (eqv.of_zero_scalar f) := (add_con.ker_rel _).2 $
by simp [free_add_monoid.lift_eval_of, C0']
| _, _, (eqv.of_add z f i m₁ m₂) := (add_con.ker_rel _).2 $
by simp [free_add_monoid.lift_eval_of, C_add]
| _, _, (eqv.of_add_scalar z₁ z₂ f) := (add_con.ker_rel _).2 $
by simp [free_add_monoid.lift_eval_of, C_add_scalar]
| _, _, (eqv.of_smul z f i r') := (add_con.ker_rel _).2 $
by simp [free_add_monoid.lift_eval_of, C_smul]
| _, _, (eqv.add_comm x y) := (add_con.ker_rel _).2 $
by simp_rw [add_monoid_hom.map_add, add_comm]
end

-- Most of the time we want the instance below this one, which is easier for typeclass resolution
-- to find.
instance has_scalar' : has_scalar R' (⨂[R] i, s i) :=
⟨λ r, lift_add_hom (λ f : R × Π i, s i, tprod_coeff R (r • f.1) f.2)
(λ r' f i hf, by simp_rw [zero_tprod_coeff' _ f i hf])
(λ f, by simp [zero_tprod_coeff])
(λ r' f i m₁ m₂, by simp [add_tprod_coeff])
(λ r' r'' f, by simp [add_tprod_coeff', mul_add])
(λ z f i r', by simp [smul_tprod_coeff])⟩

instance : has_scalar R (⨂[R] i, s i) := pi_tensor_product.has_scalar'

lemma smul_tprod_coeff' (r : R') (z : R) (f : Π i, s i) :
r • (tprod_coeff R z f) = tprod_coeff R (r • z) f := rfl

protected theorem smul_zero (r : R') : (r • 0 : ⨂[R] i, s i) = 0 :=
dupuisf marked this conversation as resolved.
Show resolved Hide resolved
add_monoid_hom.map_zero _

protected theorem smul_add (r : R') (x y : ⨂[R] i, s i) :
r • (x + y) = r • x + r • y :=
add_monoid_hom.map_add _ _ _

@[elab_as_eliminator]
protected theorem induction_on'
{C : (⨂[R] i, s i) → Prop}
(z : ⨂[R] i, s i)
(C1 : ∀ {r : R} {f : Π i, s i}, C (tprod_coeff R r f))
(Cp : ∀ {x y}, C x → C y → C (x + y)) : C z :=
begin
have C0 : C 0,
{ have h₁ := @C1 0 0,
rwa [zero_tprod_coeff] at h₁ },
refine add_con.induction_on z (λ x, free_add_monoid.rec_on x C0 _),
simp_rw add_con.coe_add,
refine λ f y ih, Cp _ ih,
convert @C1 f.1 f.2,
simp only [prod.mk.eta],
end

-- Most of the time we want the instance below this one, which is easier for typeclass resolution
-- to find.
instance semimodule' : semimodule R' (⨂[R] i, s i) :=
{ smul := (•),
smul_add := λ r x y, pi_tensor_product.smul_add r x y,
mul_smul := λ r r' x,
begin
refine pi_tensor_product.induction_on' x _ _,
{ intros r'' f,
simp [smul_tprod_coeff', smul_smul] },
{ intros x y ihx ihy,
simp [pi_tensor_product.smul_add, ihx, ihy] }
end,
one_smul := λ x, pi_tensor_product.induction_on' x
(λ f, by simp [smul_tprod_coeff' _ _])
(λ z y ihz ihy, by simp_rw [pi_tensor_product.smul_add, ihz, ihy]),
add_smul := λ r r' x,
begin
refine pi_tensor_product.induction_on' x _ _,
{ intros r f,
simp [smul_tprod_coeff' _ _, add_smul, add_tprod_coeff'] },
{ intros x y ihx ihy,
simp [pi_tensor_product.smul_add, ihx, ihy, add_add_add_comm] }
end,
smul_zero := λ r, pi_tensor_product.smul_zero r,
zero_smul := λ x,
begin
refine pi_tensor_product.induction_on' x _ _,
{ intros r f,
simp_rw [smul_tprod_coeff' _ _, zero_smul],
exact zero_tprod_coeff _ },
{ intros x y ihx ihy,
rw [pi_tensor_product.smul_add, ihx, ihy, add_zero] },
end }

instance : semimodule R' (⨂[R] i, s i) := pi_tensor_product.semimodule'

variables {R}

variables (R)
/-- The canonical `multilinear_map R s (⨂[R] i, s i)`. -/
def tprod : multilinear_map R s (⨂[R] i, s i) :=
{ to_fun := tprod_coeff R 1,
map_add' := λ f i x y, (add_tprod_coeff (1 : R) f i x y).symm,
map_smul' := λ f i r x,
by simp_rw [smul_tprod_coeff', ←smul_tprod_coeff (1 : R) _ i, update_idem, update_same] }

variables {R}

notation `⨂ₜ[`:100 R`] ` binders `, ` r:(scoped:67 f, tprod R f) := r

@[simp]
lemma tprod_coeff_eq_smul_tprod (z : R) (f : Π i, s i) : tprod_coeff R z f = z • tprod R f :=
begin
have : z = z • (1 : R) := by simp only [mul_one, algebra.id.smul_eq_mul],
conv_lhs { rw this },
rw ←smul_tprod_coeff',
refl,
end

@[elab_as_eliminator]
protected theorem induction_on
{C : (⨂[R] i, s i) → Prop}
(z : ⨂[R] i, s i)
(C1 : ∀ {r : R} {f : Π i, s i}, C (r • (tprod R f)))
(Cp : ∀ {x y}, C x → C y → C (x + y)) : C z :=
begin
simp_rw ←tprod_coeff_eq_smul_tprod at C1,
exact pi_tensor_product.induction_on' z @C1 @Cp,
end

@[ext]
theorem ext {φ₁ φ₂ : (⨂[R] i, s i) →ₗ[R] E}
(H : φ₁.comp_multilinear_map (tprod R) = φ₂.comp_multilinear_map (tprod R)) : φ₁ = φ₂ :=
begin
refine linear_map.ext _,
refine λ z,
(pi_tensor_product.induction_on' z _ (λ x y hx hy, by rw [φ₁.map_add, φ₂.map_add, hx, hy])),
{ intros r f,
rw [tprod_coeff_eq_smul_tprod, φ₁.map_smul, φ₂.map_smul],
apply _root_.congr_arg,
exact multilinear_map.congr_fun H f }
end

end module

section multilinear
open multilinear_map
variables {s}

/-- Auxiliary function to constructing a linear map `(⨂[R] i, s i) → E` given a
`multilinear map R s E` with the property that its composition with the canonical
`multilinear_map R s (⨂[R] i, s i)` is the given multilinear map. -/
def lift_aux (φ : multilinear_map R s E) : (⨂[R] i, s i) →+ E :=
lift_add_hom (λ (p : R × Π i, s i), p.1 • (φ p.2))
(λ z f i hf, by rw [map_coord_zero φ i hf, smul_zero])
(λ f, by rw [zero_smul])
(λ z f i m₁ m₂, by rw [←smul_add, φ.map_add])
(λ z₁ z₂ f, by rw [←add_smul])
(λ z f i r, by simp [φ.map_smul, smul_smul, mul_comm])

lemma lift_aux_tprod (φ : multilinear_map R s E) (f : Π i, s i) : lift_aux φ (tprod R f) = φ f :=
by simp only [lift_aux, lift_add_hom, tprod, multilinear_map.coe_mk, tprod_coeff,
free_add_monoid.lift_eval_of, one_smul, add_con.lift_mk']

lemma lift_aux_tprod_coeff (φ : multilinear_map R s E) (z : R) (f : Π i, s i) :
lift_aux φ (tprod_coeff R z f) = z • φ f :=
by simp [lift_aux, lift_add_hom, tprod_coeff, free_add_monoid.lift_eval_of]

lemma lift_aux.smul {φ : multilinear_map R s E} (r : R) (x : ⨂[R] i, s i) :
lift_aux φ (r • x) = r • lift_aux φ x :=
begin
refine pi_tensor_product.induction_on' x _ _,
{ intros z f,
rw [smul_tprod_coeff' r z f, lift_aux_tprod_coeff, lift_aux_tprod_coeff, smul_assoc] },
{ intros z y ihz ihy,
rw [smul_add, (lift_aux φ).map_add, ihz, ihy, (lift_aux φ).map_add, smul_add] }
end

/-- Constructing a linear map `(⨂[R] i, s i) → E` given a `multilinear_map R s E` with the
property that its composition with the canonical `multilinear_map R s E` is
the given multilinear map `φ`. -/
def lift : (multilinear_map R s E) ≃ₗ[R] ((⨂[R] i, s i) →ₗ[R] E) :=
{ to_fun := λ φ, { map_smul' := lift_aux.smul, .. lift_aux φ },
inv_fun := λ φ', φ'.comp_multilinear_map (tprod R),
left_inv := λ φ, by { ext, simp [lift_aux_tprod, linear_map.comp_multilinear_map] },
right_inv := λ φ, by { ext, simp [lift_aux_tprod] },
map_add' := λ φ₁ φ₂, by { ext, simp [lift_aux_tprod] },
map_smul' := λ r φ₂, by { ext, simp [lift_aux_tprod] } }

variables {φ : multilinear_map R s E}

@[simp] lemma lift.tprod (f : Π i, s i) : lift φ (tprod R f) = φ f := lift_aux_tprod φ f
theorem lift.unique' {φ' : (⨂[R] i, s i) →ₗ[R] E} (H : φ'.comp_multilinear_map (tprod R) = φ) :
φ' = lift φ :=
ext $ H.symm ▸ (lift.symm_apply_apply φ).symm

theorem lift.unique {φ' : (⨂[R] i, s i) →ₗ[R] E} (H : ∀ f, φ' (tprod R f) = φ f) :
φ' = lift φ :=
lift.unique' (multilinear_map.ext H)

theorem lift_tprod : lift (tprod R : multilinear_map R s _) = linear_map.id :=
eq.symm $ lift.unique' rfl

end multilinear

end pi_tensor_product

end semiring

section ring
namespace pi_tensor_product

open pi_tensor_product
open_locale tensor_product

variables {ι : Type*} {R : Type*} [comm_ring R]
variables {s : ι → Type*} [∀ i, add_comm_group (s i)] [∀ i, module R (s i)]

/- Unlike for the binary tensor product, we require `R` to be a `comm_ring` here, otherwise
this is false in the case where `ι` is empty. -/
instance : add_comm_group (⨂[R] i, s i) := semimodule.add_comm_monoid_to_add_comm_group R
dupuisf marked this conversation as resolved.
Show resolved Hide resolved

end pi_tensor_product
end ring