Skip to content

Commit

Permalink
chore: various naming fixes (#1258)
Browse files Browse the repository at this point in the history
  • Loading branch information
ChrisHughes24 committed Dec 30, 2022
1 parent f1cd87b commit 00088a4
Show file tree
Hide file tree
Showing 5 changed files with 97 additions and 97 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Data/Set/Basic.lean
Expand Up @@ -1664,7 +1664,7 @@ alias disjoint_compl_left_iff_subset ↔ _ _root_.HasSubset.Subset.disjoint_comp
alias disjoint_compl_right_iff_subset ↔ _ _root_.HasSubset.Subset.disjoint_compl_right

theorem subset_union_compl_iff_inter_subset {s t u : Set α} : s ⊆ t ∪ uᶜ ↔ s ∩ u ⊆ t :=
(@is_compl_compl _ u _).le_sup_right_iff_inf_left_le
(@isCompl_compl _ u _).le_sup_right_iff_inf_left_le
#align set.subset_union_compl_iff_inter_subset Set.subset_union_compl_iff_inter_subset

theorem compl_subset_iff_union {s t : Set α} : sᶜ ⊆ t ↔ s ∪ t = univ :=
Expand Down
170 changes: 85 additions & 85 deletions Mathlib/Data/Set/Intervals/OrdConnected.lean
Expand Up @@ -47,24 +47,24 @@ theorem OrdConnected.out (h : OrdConnected s) : ∀ ⦃x⦄ (_ : x ∈ s) ⦃y
h.1
#align set.ord_connected.out Set.OrdConnected.out

theorem OrdConnected_def : OrdConnected s ↔ ∀ ⦃x⦄ (_ : x ∈ s) ⦃y⦄ (_ : y ∈ s), Icc x y ⊆ s :=
theorem ordConnected_def : OrdConnected s ↔ ∀ ⦃x⦄ (_ : x ∈ s) ⦃y⦄ (_ : y ∈ s), Icc x y ⊆ s :=
fun h => h.1, fun h => ⟨h⟩⟩
#align set.ord_connected_def Set.OrdConnected_def
#align set.ord_connected_def Set.ordConnected_def

/-- It suffices to prove `[[x, y]] ⊆ s` for `x y ∈ s`, `x ≤ y`. -/
theorem OrdConnected_iff : OrdConnected s ↔ ∀ x ∈ s, ∀ y ∈ s, x ≤ y → Icc x y ⊆ s :=
OrdConnected_def.trans
theorem ordConnected_iff : OrdConnected s ↔ ∀ x ∈ s, ∀ y ∈ s, x ≤ y → Icc x y ⊆ s :=
ordConnected_def.trans
fun hs _ hx _ hy _ => hs hx hy, fun H x hx y hy _ hz => H x hx y hy (le_trans hz.1 hz.2) hz⟩
#align set.ord_connected_iff Set.OrdConnected_iff
#align set.ord_connected_iff Set.ordConnected_iff

theorem OrdConnected_of_Ioo {α : Type _} [PartialOrder α] {s : Set α}
theorem ordConnected_of_Ioo {α : Type _} [PartialOrder α] {s : Set α}
(hs : ∀ x ∈ s, ∀ y ∈ s, x < y → Ioo x y ⊆ s) : OrdConnected s := by
rw [OrdConnected_iff]
rw [ordConnected_iff]
intro x hx y hy hxy
rcases eq_or_lt_of_le hxy with (rfl | hxy'); · simpa
rw [← Ioc_insert_left hxy, ← Ioo_insert_right hxy']
exact insert_subset.2 ⟨hx, insert_subset.2 ⟨hy, hs x hx y hy hxy'⟩⟩
#align set.ord_connected_of_Ioo Set.OrdConnected_of_Ioo
#align set.ord_connected_of_Ioo Set.ordConnected_of_Ioo

theorem OrdConnected.preimage_mono {f : β → α} (hs : OrdConnected s) (hf : Monotone f) :
OrdConnected (f ⁻¹' s) :=
Expand Down Expand Up @@ -96,97 +96,97 @@ theorem OrdConnected.dual {s : Set α} (hs : OrdConnected s) :
fun _ hx _ hy _ hz => hs.out hy hx ⟨hz.2, hz.1⟩⟩
#align set.ord_connected.dual Set.OrdConnected.dual

theorem OrdConnected_dual {s : Set α} : OrdConnected (OrderDual.ofDual ⁻¹' s) ↔ OrdConnected s :=
fun h => by simpa only [OrdConnected_def] using h.dual, fun h => h.dual⟩
#align set.ord_connected_dual Set.OrdConnected_dual
theorem ordConnected_dual {s : Set α} : OrdConnected (OrderDual.ofDual ⁻¹' s) ↔ OrdConnected s :=
fun h => by simpa only [ordConnected_def] using h.dual, fun h => h.dual⟩
#align set.ord_connected_dual Set.ordConnected_dual

theorem OrdConnected_interₛ {S : Set (Set α)} (hS : ∀ s ∈ S, OrdConnected s) :
theorem ordConnected_interₛ {S : Set (Set α)} (hS : ∀ s ∈ S, OrdConnected s) :
OrdConnected (⋂₀ S) :=
fun _ hx _ hy => subset_interₛ fun s hs => (hS s hs).out (hx s hs) (hy s hs)⟩
#align set.ord_connected_sInter Set.OrdConnected_interₛ
#align set.ord_connected_sInter Set.ordConnected_interₛ

theorem OrdConnected_interᵢ {ι : Sort _} {s : ι → Set α} (hs : ∀ i, OrdConnected (s i)) :
theorem ordConnected_interᵢ {ι : Sort _} {s : ι → Set α} (hs : ∀ i, OrdConnected (s i)) :
OrdConnected (⋂ i, s i) :=
OrdConnected_interₛ <| forall_range_iff.2 hs
#align set.ord_connected_Inter Set.OrdConnected_interᵢ
ordConnected_interₛ <| forall_range_iff.2 hs
#align set.ord_connected_Inter Set.ordConnected_interᵢ

instance OrdConnected_interᵢ' {ι : Sort _} {s : ι → Set α} [∀ i, OrdConnected (s i)] :
instance ordConnected_interᵢ' {ι : Sort _} {s : ι → Set α} [∀ i, OrdConnected (s i)] :
OrdConnected (⋂ i, s i) :=
OrdConnected_interᵢ ‹_›
#align set.ord_connected_Inter' Set.OrdConnected_interᵢ'
ordConnected_interᵢ ‹_›
#align set.ord_connected_Inter' Set.ordConnected_interᵢ'

/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
theorem OrdConnected_binterᵢ {ι : Sort _} {p : ι → Prop} {s : ∀ (i : ι) (_ : p i), Set α}
theorem ordConnected_binterᵢ {ι : Sort _} {p : ι → Prop} {s : ∀ (i : ι) (_ : p i), Set α}
(hs : ∀ i hi, OrdConnected (s i hi)) : OrdConnected (⋂ (i) (hi), s i hi) :=
OrdConnected_interᵢ fun i => OrdConnected_interᵢ <| hs i
#align set.ord_connected_bInter Set.OrdConnected_binterᵢ
ordConnected_interᵢ fun i => ordConnected_interᵢ <| hs i
#align set.ord_connected_bInter Set.ordConnected_binterᵢ

theorem OrdConnected_pi {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] {s : Set ι}
theorem ordConnected_pi {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] {s : Set ι}
{t : ∀ i, Set (α i)} (h : ∀ i ∈ s, OrdConnected (t i)) : OrdConnected (s.pi t) :=
fun _ hx _ hy _ hz i hi => (h i hi).out (hx i hi) (hy i hi) ⟨hz.1 i, hz.2 i⟩⟩
#align set.ord_connected_pi Set.OrdConnected_pi
#align set.ord_connected_pi Set.ordConnected_pi

instance OrdConnected_pi' {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] {s : Set ι}
instance ordConnected_pi' {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] {s : Set ι}
{t : ∀ i, Set (α i)} [h : ∀ i, OrdConnected (t i)] : OrdConnected (s.pi t) :=
OrdConnected_pi fun i _ => h i
#align set.ord_connected_pi' Set.OrdConnected_pi'
ordConnected_pi fun i _ => h i
#align set.ord_connected_pi' Set.ordConnected_pi'

@[instance]
theorem OrdConnected_Ici {a : α} : OrdConnected (Ici a) :=
theorem ordConnected_Ici {a : α} : OrdConnected (Ici a) :=
fun _ hx _ _ _ hz => le_trans hx hz.1
#align set.ord_connected_Ici Set.OrdConnected_Ici
#align set.ord_connected_Ici Set.ordConnected_Ici

@[instance]
theorem OrdConnected_Iic {a : α} : OrdConnected (Iic a) :=
theorem ordConnected_Iic {a : α} : OrdConnected (Iic a) :=
fun _ _ _ hy _ hz => le_trans hz.2 hy⟩
#align set.ord_connected_Iic Set.OrdConnected_Iic
#align set.ord_connected_Iic Set.ordConnected_Iic

@[instance]
theorem OrdConnected_Ioi {a : α} : OrdConnected (Ioi a) :=
theorem ordConnected_Ioi {a : α} : OrdConnected (Ioi a) :=
fun _ hx _ _ _ hz => lt_of_lt_of_le hx hz.1
#align set.ord_connected_Ioi Set.OrdConnected_Ioi
#align set.ord_connected_Ioi Set.ordConnected_Ioi

@[instance]
theorem OrdConnected_Iio {a : α} : OrdConnected (Iio a) :=
theorem ordConnected_Iio {a : α} : OrdConnected (Iio a) :=
fun _ _ _ hy _ hz => lt_of_le_of_lt hz.2 hy⟩
#align set.OrdConnected_Iio Set.OrdConnected_Iio
#align set.OrdConnected_Iio Set.ordConnected_Iio

@[instance]
theorem OrdConnected_Icc {a b : α} : OrdConnected (Icc a b) :=
OrdConnected_Ici.inter OrdConnected_Iic
#align set.ord_connected_Icc Set.OrdConnected_Icc
theorem ordConnected_Icc {a b : α} : OrdConnected (Icc a b) :=
ordConnected_Ici.inter ordConnected_Iic
#align set.ord_connected_Icc Set.ordConnected_Icc

@[instance]
theorem OrdConnected_Ico {a b : α} : OrdConnected (Ico a b) :=
OrdConnected_Ici.inter OrdConnected_Iio
#align set.ord_connected_Ico Set.OrdConnected_Ico
theorem ordConnected_Ico {a b : α} : OrdConnected (Ico a b) :=
ordConnected_Ici.inter ordConnected_Iio
#align set.ord_connected_Ico Set.ordConnected_Ico

@[instance]
theorem OrdConnected_Ioc {a b : α} : OrdConnected (Ioc a b) :=
OrdConnected_Ioi.inter OrdConnected_Iic
#align set.ord_connected_Ioc Set.OrdConnected_Ioc
theorem ordConnected_Ioc {a b : α} : OrdConnected (Ioc a b) :=
ordConnected_Ioi.inter ordConnected_Iic
#align set.ord_connected_Ioc Set.ordConnected_Ioc

@[instance]
theorem OrdConnected_Ioo {a b : α} : OrdConnected (Ioo a b) :=
OrdConnected_Ioi.inter OrdConnected_Iio
#align set.ord_connected_Ioo Set.OrdConnected_Ioo
theorem ordConnected_Ioo {a b : α} : OrdConnected (Ioo a b) :=
ordConnected_Ioi.inter ordConnected_Iio
#align set.ord_connected_Ioo Set.ordConnected_Ioo

@[instance]
theorem OrdConnected_singleton {α : Type _} [PartialOrder α] {a : α} :
theorem ordConnected_singleton {α : Type _} [PartialOrder α] {a : α} :
OrdConnected ({a} : Set α) := by
rw [← Icc_self]
exact OrdConnected_Icc
#align set.ord_connected_singleton Set.OrdConnected_singleton
exact ordConnected_Icc
#align set.ord_connected_singleton Set.ordConnected_singleton

@[instance]
theorem OrdConnected_empty : OrdConnected (∅ : Set α) :=
theorem ordConnected_empty : OrdConnected (∅ : Set α) :=
fun _ => False.elim⟩
#align set.ord_connected_empty Set.OrdConnected_empty
#align set.ord_connected_empty Set.ordConnected_empty

@[instance]
theorem OrdConnected_univ : OrdConnected (univ : Set α) :=
theorem ordConnected_univ : OrdConnected (univ : Set α) :=
fun _ _ _ _ => subset_univ _⟩
#align set.ord_connected_univ Set.OrdConnected_univ
#align set.ord_connected_univ Set.ordConnected_univ

/-- In a dense order `α`, the subtype from an `OrdConnected` set is also densely ordered. -/
instance [DenselyOrdered α] {s : Set α} [hs : OrdConnected s] : DenselyOrdered s :=
Expand All @@ -195,35 +195,35 @@ instance [DenselyOrdered α] {s : Set α} [hs : OrdConnected s] : DenselyOrdered
⟨⟨x, (hs.out a.2 b.2) (Ioo_subset_Icc_self H)⟩, H⟩⟩

@[instance]
theorem OrdConnected_preimage {F : Type _} [OrderHomClass F α β] (f : F) {s : Set β}
theorem ordConnected_preimage {F : Type _} [OrderHomClass F α β] (f : F) {s : Set β}
[hs : OrdConnected s] : OrdConnected (f ⁻¹' s) :=
fun _ hx _ hy _ hz => hs.out hx hy ⟨OrderHomClass.mono _ hz.1, OrderHomClass.mono _ hz.2⟩⟩
#align set.ord_connected_preimage Set.OrdConnected_preimage
#align set.ord_connected_preimage Set.ordConnected_preimage

@[instance]
theorem OrdConnected_image {E : Type _} [OrderIsoClass E α β] (e : E) {s : Set α}
theorem ordConnected_image {E : Type _} [OrderIsoClass E α β] (e : E) {s : Set α}
[hs : OrdConnected s] : OrdConnected (e '' s) := by
erw [(e : α ≃o β).image_eq_preimage]
apply OrdConnected_preimage (e : α ≃o β).symm
#align set.ord_connected_image Set.OrdConnected_image
apply ordConnected_preimage (e : α ≃o β).symm
#align set.ord_connected_image Set.ordConnected_image

-- porting note: split up `simp_rw [← image_univ, OrdConnected_image e]`, would not work otherwise
@[instance]
theorem OrdConnected_range {E : Type _} [OrderIsoClass E α β] (e : E) : OrdConnected (range e) := by
theorem ordConnected_range {E : Type _} [OrderIsoClass E α β] (e : E) : OrdConnected (range e) := by
simp_rw [← image_univ]
exact OrdConnected_image (e : α ≃o β)
#align set.ord_connected_range Set.OrdConnected_range
exact ordConnected_image (e : α ≃o β)
#align set.ord_connected_range Set.ordConnected_range

@[simp]
theorem dual_OrdConnected_iff {s : Set α} : OrdConnected (ofDual ⁻¹' s) ↔ OrdConnected s := by
simp_rw [OrdConnected_def, toDual.surjective.forall, dual_Icc, Subtype.forall']
theorem dual_ordConnected_iff {s : Set α} : OrdConnected (ofDual ⁻¹' s) ↔ OrdConnected s := by
simp_rw [ordConnected_def, toDual.surjective.forall, dual_Icc, Subtype.forall']
exact forall_swap
#align set.dual_ord_connected_iff Set.dual_OrdConnected_iff
#align set.dual_ord_connected_iff Set.dual_ordConnected_iff

@[instance]
theorem dual_OrdConnected {s : Set α} [OrdConnected s] : OrdConnected (ofDual ⁻¹' s) :=
dual_OrdConnected_iff.2 ‹_›
#align set.dual_ord_connected Set.dual_OrdConnected
theorem dual_ordConnected {s : Set α} [OrdConnected s] : OrdConnected (ofDual ⁻¹' s) :=
dual_ordConnected_iff.2 ‹_›
#align set.dual_ord_connected Set.dual_ordConnected

end Preorder

Expand All @@ -232,14 +232,14 @@ section LinearOrder
variable {α : Type _} [LinearOrder α] {s : Set α} {x : α}

@[instance]
theorem OrdConnected_interval {a b : α} : OrdConnected [[a, b]] :=
OrdConnected_Icc
#align set.ord_connected_interval Set.OrdConnected_interval
theorem ordConnected_interval {a b : α} : OrdConnected [[a, b]] :=
ordConnected_Icc
#align set.ord_connected_interval Set.ordConnected_interval

@[instance]
theorem OrdConnected_interval_oc {a b : α} : OrdConnected (Ι a b) :=
OrdConnected_Ioc
#align set.ord_connected_interval_oc Set.OrdConnected_interval_oc
theorem ordConnected_interval_oc {a b : α} : OrdConnected (Ι a b) :=
ordConnected_Ioc
#align set.ord_connected_interval_oc Set.ordConnected_interval_oc

theorem OrdConnected.interval_subset (hs : OrdConnected s) ⦃x⦄ (hx : x ∈ s) ⦃y⦄ (hy : y ∈ s) :
[[x, y]] ⊆ s :=
Expand All @@ -251,25 +251,25 @@ theorem OrdConnected.interval_oc_subset (hs : OrdConnected s) ⦃x⦄ (hx : x
Ioc_subset_Icc_self.trans <| hs.interval_subset hx hy
#align set.ord_connected.interval_oc_subset Set.OrdConnected.interval_oc_subset

theorem OrdConnected_iff_interval_subset :
theorem ordConnected_iff_interval_subset :
OrdConnected s ↔ ∀ ⦃x⦄ (_ : x ∈ s) ⦃y⦄ (_ : y ∈ s), [[x, y]] ⊆ s :=
fun h => h.interval_subset, fun H => ⟨fun _ hx _ hy => Icc_subset_interval.trans <| H hx hy⟩⟩
#align set.ord_connected_iff_interval_subset Set.OrdConnected_iff_interval_subset
#align set.ord_connected_iff_interval_subset Set.ordConnected_iff_interval_subset

theorem OrdConnected_of_interval_subset_left (h : ∀ y ∈ s, [[x, y]] ⊆ s) : OrdConnected s :=
OrdConnected_iff_interval_subset.2 fun y hy z hz =>
theorem ordConnected_of_interval_subset_left (h : ∀ y ∈ s, [[x, y]] ⊆ s) : OrdConnected s :=
ordConnected_iff_interval_subset.2 fun y hy z hz =>
calc
[[y, z]] ⊆ [[y, x]] ∪ [[x, z]] := interval_subset_interval_union_interval
_ = [[x, y]] ∪ [[x, z]] := by rw [interval_swap]
_ ⊆ s := union_subset (h y hy) (h z hz)
#align set.ord_connected_of_interval_subset_left Set.OrdConnected_of_interval_subset_left
#align set.ord_connected_of_interval_subset_left Set.ordConnected_of_interval_subset_left

theorem OrdConnected_iff_interval_subset_left (hx : x ∈ s) :
theorem ordConnected_iff_interval_subset_left (hx : x ∈ s) :
OrdConnected s ↔ ∀ ⦃y⦄, y ∈ s → [[x, y]] ⊆ s :=
fun hs => hs.interval_subset hx, OrdConnected_of_interval_subset_left
#align set.ord_connected_iff_interval_subset_left Set.OrdConnected_iff_interval_subset_left
fun hs => hs.interval_subset hx, ordConnected_of_interval_subset_left
#align set.ord_connected_iff_interval_subset_left Set.ordConnected_iff_interval_subset_left

theorem OrdConnected_iff_interval_subset_right (hx : x ∈ s) :
theorem ordConnected_iff_interval_subset_right (hx : x ∈ s) :
OrdConnected s ↔ ∀ ⦃y⦄, y ∈ s → [[y, x]] ⊆ s := by
simp_rw [OrdConnected_iff_interval_subset_left hx, interval_swap]
#align set.ord_connected_iff_interval_subset_right Set.OrdConnected_iff_interval_subset_right
simp_rw [ordConnected_iff_interval_subset_left hx, interval_swap]
#align set.ord_connected_iff_interval_subset_right Set.ordConnected_iff_interval_subset_right
14 changes: 7 additions & 7 deletions Mathlib/Order/BooleanAlgebra.lean
Expand Up @@ -568,9 +568,9 @@ theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top

theorem is_compl_compl : IsCompl x (xᶜ) :=
theorem isCompl_compl : IsCompl x (xᶜ) :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl is_compl_compl
#align is_compl_compl isCompl_compl

theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
Expand All @@ -581,7 +581,7 @@ theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
#align himp_eq himp_eq

instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
fun x => ⟨xᶜ, is_compl_compl⟩⟩
fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice

-- see Note [lower instance priority]
Expand All @@ -597,7 +597,7 @@ instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, is_compl_compl.le_sup_right_iff_inf_left_le],
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
Expand All @@ -615,13 +615,13 @@ theorem top_sdiff : ⊤ \ x = xᶜ :=
theorem eq_compl_iff_is_compl : x = yᶜ ↔ IsCompl x y :=
fun h => by
rw [h]
exact is_compl_compl.symm, IsCompl.eq_compl⟩
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_is_compl

theorem compl_eq_iff_is_compl : xᶜ = y ↔ IsCompl x y :=
fun h => by
rw [← h]
exact is_compl_compl, IsCompl.compl_eq⟩
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_is_compl

theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
Expand All @@ -634,7 +634,7 @@ theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by

@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@is_compl_compl _ x _).symm.compl_eq
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl

theorem compl_comp_compl : compl ∘ compl = @id α :=
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Order/Cover.lean
Expand Up @@ -131,7 +131,7 @@ theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).

@[simp]
theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
(OrdConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
(ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
#align apply_wcovby_apply_iff apply_wcovby_apply_iff

@[simp]
Expand Down Expand Up @@ -352,7 +352,7 @@ theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).O

@[simp]
theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
(OrdConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
(ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
#align apply_covby_apply_iff apply_covby_apply_iff

theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Order/ModularLattice.lean
Expand Up @@ -371,12 +371,12 @@ namespace IsCompl
variable [Lattice α] [BoundedOrder α] [IsModularLattice α]

/-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
def iicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
(OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
(h.inf_eq_bot.symm ▸ Set.Icc_bot.symm)).trans <|
(infIccOrderIsoIccSup a b).trans
(OrderIso.setCongr (Set.Icc b (a ⊔ b)) (Set.Ici b) (h.sup_eq_top.symm ▸ Set.Icc_top))
#align is_compl.Iic_order_iso_Ici IsCompl.iicOrderIsoIci
#align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIci

end IsCompl

Expand Down

0 comments on commit 00088a4

Please sign in to comment.