Skip to content

Commit

Permalink
chore: classify removed @[ext] porting notes (#11183)
Browse files Browse the repository at this point in the history
Classifies by adding issue number #11182 to porting notes claiming: 

> removed `@[ext]`
  • Loading branch information
pitmonticone committed Mar 5, 2024
1 parent 76aa1eb commit 15d4635
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Types.lean
Expand Up @@ -226,7 +226,7 @@ theorem limitEquivSections_symm_apply (F : J ⥤ Type u) (x : F.sections) (j : J
-- isLimitEquivSections_symm_apply _ _ _
--#align category_theory.limits.types.limit_equiv_sections_symm_apply' CategoryTheory.Limits.Types.limitEquivSections_symm_apply'

-- Porting note: removed @[ext]
-- Porting note (#11182): removed @[ext]
/-- Construct a term of `limit F : Type u` from a family of terms `x : Π j, F.obj j`
which are "coherent": `∀ (j j') (f : j ⟶ j'), F.map f (x j) = x j'`.
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Preadditive/Mat.lean
Expand Up @@ -484,7 +484,7 @@ def liftUnique (F : C ⥤ D) [Functor.Additive F] (L : Mat_ C ⥤ D) [Functor.Ad
set_option linter.uppercaseLean3 false in
#align category_theory.Mat_.lift_unique CategoryTheory.Mat_.liftUnique

-- Porting note: removed @[ext] as the statement is not an equality
-- Porting note (#11182): removed @[ext] as the statement is not an equality
-- TODO is there some uniqueness statement for the natural isomorphism in `liftUnique`?
/-- Two additive functors `Mat_ C ⥤ D` are naturally isomorphic if
their precompositions with `embedding C` are naturally isomorphic as functors `C ⥤ D`. -/
Expand Down
6 changes: 3 additions & 3 deletions Mathlib/CategoryTheory/Subobject/Basic.lean
Expand Up @@ -285,23 +285,23 @@ theorem eq_of_comm {B : C} {X Y : Subobject B} (f : (X : C) ≅ (Y : C))
le_antisymm (le_of_comm f.hom w) <| le_of_comm f.inv <| f.inv_comp_eq.2 w.symm
#align category_theory.subobject.eq_of_comm CategoryTheory.Subobject.eq_of_comm

-- Porting note: removed @[ext]
-- Porting note (#11182): removed @[ext]
/-- To show that two subobjects are equal, it suffices to exhibit an isomorphism commuting with
the arrows. -/
theorem eq_mk_of_comm {B A : C} {X : Subobject B} (f : A ⟶ B) [Mono f] (i : (X : C) ≅ A)
(w : i.hom ≫ f = X.arrow) : X = mk f :=
eq_of_comm (i.trans (underlyingIso f).symm) <| by simp [w]
#align category_theory.subobject.eq_mk_of_comm CategoryTheory.Subobject.eq_mk_of_comm

-- Porting note: removed @[ext]
-- Porting note (#11182): removed @[ext]
/-- To show that two subobjects are equal, it suffices to exhibit an isomorphism commuting with
the arrows. -/
theorem mk_eq_of_comm {B A : C} {X : Subobject B} (f : A ⟶ B) [Mono f] (i : A ≅ (X : C))
(w : i.hom ≫ X.arrow = f) : mk f = X :=
Eq.symm <| eq_mk_of_comm _ i.symm <| by rw [Iso.symm_hom, Iso.inv_comp_eq, w]
#align category_theory.subobject.mk_eq_of_comm CategoryTheory.Subobject.mk_eq_of_comm

-- Porting note: removed @[ext]
-- Porting note (#11182): removed @[ext]
/-- To show that two subobjects are equal, it suffices to exhibit an isomorphism commuting with
the arrows. -/
theorem mk_eq_mk_of_comm {B A₁ A₂ : C} (f : A₁ ⟶ B) (g : A₂ ⟶ B) [Mono f] [Mono g] (i : A₁ ≅ A₂)
Expand Down

0 comments on commit 15d4635

Please sign in to comment.