Skip to content

Commit

Permalink
finish
Browse files Browse the repository at this point in the history
  • Loading branch information
jjaassoonn committed Jul 8, 2024
1 parent 707c3c8 commit 32ba554
Showing 1 changed file with 29 additions and 20 deletions.
49 changes: 29 additions & 20 deletions Mathlib/RingTheory/Flat/CategoryTheory.lean
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,14 @@ In this file we prove that tensoring with a flat module is an exact functor.
- `Module.Flat.iff_tensorRight_preservesFiniteLimits`: an `R`-module `M` is flat if and only if
right tensoring with `M` preserves finite limits, i.e. the functor `M ⊗ -` is left exact.
- `Module.Flat.iff_lTensor_preserves_shortComplex_exact`: an `R`-module `M` is flat if and only if
for every short exact sequence `0 ⟶ A ⟶ B ⟶ C ⟶ 0`, `0 ⟶ M ⊗ A ⟶ M ⊗ B ⟶ M ⊗ C ⟶ 0` is also
a short exact sequence.
- `Module.Flat.iff_rTensor_preserves_shortComplex_exact`: an `R`-module `M` is flat if and only if
for every short exact sequence `0 ⟶ A ⟶ B ⟶ C ⟶ 0`, `0 ⟶ A ⊗ M ⟶ B ⊗ M ⟶ C ⊗ M ⟶ 0` is also
a short exact sequence.
- `Module.Flat.higherTorIsoZero`: if an `R`-module `M` is flat, then `Torⁿ(M, N) ≅ 0` for all `N`
and all `n ≥ 1`.
Expand Down Expand Up @@ -86,10 +94,10 @@ noncomputable instance [flat : Flat R M] {X Y : ModuleCat.{u} R} (f : X ⟶ Y) :
have mono0 : Mono ι :=
{ right_cancellation := fun {Z} g h H => by
let c' : Limits.Cone (Limits.parallelPair f 0) :=
⟨Z, ⟨fun | .zero => h ≫ ι | .one => 0, by rintro _ _ (⟨j⟩|⟨j⟩) <;> simpa] using H⟩⟩
⟨Z, ⟨fun | .zero => h ≫ ι | .one => 0, by rintro _ _ (⟨j⟩|⟨j⟩) <;> simp, H]⟩⟩

rw [hc.uniq c' g, hc.uniq c' h] <;>
rintro (⟨j⟩|⟨j⟩) <;> simpa [ι] using H }
rintro (⟨j⟩|⟨j⟩) <;> try simp [ι, H] <;> try simpa [ι, c'] using H }
let s : ShortComplex (ModuleCat R) := .mk ι f $ by simp [ι]
have exact0 : s.Exact:= by
refine ShortComplex.exact_of_f_is_kernel _ $
Expand All @@ -101,13 +109,10 @@ noncomputable instance [flat : Flat R M] {X Y : ModuleCat.{u} R} (f : X ⟶ Y) :
· rfl
· rfl

let s' := s.map (tensorLeft M)
let f' := M ◁ f; let ι' := M ◁ ι
have exact1 : s'.Exact := by
apply lTensor_shortComplex_exact; assumption
let s' := s.map (tensorLeft M); let f' := M ◁ f; let ι' := M ◁ ι
have exact1 : s'.Exact := by apply lTensor_shortComplex_exact; assumption

have mono1 : Mono ι' := by

rw [ModuleCat.mono_iff_injective] at mono0 ⊢
exact lTensor_preserves_injective_linearMap _ mono0

Expand Down Expand Up @@ -163,23 +168,27 @@ section Tor

open scoped ZeroObject

/-
For a flat module `M`, higher tor groups vanish.
-/
noncomputable def higherTorIsoZero [Flat R M] (n : ℕ) (N : ModuleCat.{u} R) :

Check failure on line 174 in Mathlib/RingTheory/Flat/CategoryTheory.lean

View workflow job for this annotation

GitHub Actions / Build

@module.Flat.higherTorIsoZero definition missing documentation string
((Tor _ (n + 1)).obj M).obj N ≅ 0 :=
let pN := ProjectiveResolution.of N
pN.isoLeftDerivedObj (tensorLeft M) (n + 1) ≪≫
(Limits.IsZero.isoZero $ HomologicalComplex.exactAt_iff_isZero_homology _ _ |>.1 $
lTensor_shortComplex_exact M (pN.complex.sc (n + 1)) (pN.complex_exactAt_succ n))


/--
For a flat module `M`, higher tor groups vanish.
-/
noncomputable def higherTorIsoZero [flat : Flat R M] (n : ℕ) (N : ModuleCat.{u} R) :
((Tor' _ (n + 1)).obj N).obj M ≅ 0 := by
dsimp [Tor', Functor.flip]
noncomputable def higherTor'IsoZero [Flat R M] (n : ℕ) (N : ModuleCat.{u} R) :
((Tor' _ (n + 1)).obj N).obj M ≅ 0 :=
let pN := ProjectiveResolution.of N
refine' pN.isoLeftDerivedObj (tensorRight M) (n + 1) ≪≫ ?_
refine Limits.IsZero.isoZero ?_
dsimp only [HomologicalComplex.homologyFunctor_obj]
rw [← HomologicalComplex.exactAt_iff_isZero_homology, HomologicalComplex.exactAt_iff,
← exact_iff_shortComplex_exact, ModuleCat.exact_iff, Eq.comm, ← LinearMap.exact_iff]
refine iff_rTensor_exact |>.1 flat ?_
rw [LinearMap.exact_iff, Eq.comm, ← ModuleCat.exact_iff]
have := pN.complex_exactAt_succ n
rw [HomologicalComplex.exactAt_iff, ← exact_iff_shortComplex_exact] at this
exact this
pN.isoLeftDerivedObj (tensorRight M) (n + 1) ≪≫
(Limits.IsZero.isoZero $ HomologicalComplex.exactAt_iff_isZero_homology _ _ |>.1 $
rTensor_shortComplex_exact M (pN.complex.sc (n + 1)) (pN.complex_exactAt_succ n))


end Tor

Expand Down

0 comments on commit 32ba554

Please sign in to comment.