Skip to content

Commit

Permalink
feat: port MeasureTheory.Function.EssSup (#4098)
Browse files Browse the repository at this point in the history
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>
  • Loading branch information
4 people committed May 21, 2023
1 parent a85cea9 commit 3c3ab91
Show file tree
Hide file tree
Showing 2 changed files with 345 additions and 0 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Expand Up @@ -1665,6 +1665,7 @@ import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
import Mathlib.MeasureTheory.Covering.VitaliFamily
import Mathlib.MeasureTheory.Decomposition.UnsignedHahn
import Mathlib.MeasureTheory.Function.AEMeasurableSequence
import Mathlib.MeasureTheory.Function.EssSup
import Mathlib.MeasureTheory.Group.Arithmetic
import Mathlib.MeasureTheory.Group.MeasurableEquiv
import Mathlib.MeasureTheory.Group.Pointwise
Expand Down
344 changes: 344 additions & 0 deletions Mathlib/MeasureTheory/Function/EssSup.lean
@@ -0,0 +1,344 @@
/-
Copyright (c) 2021 Rémy Degenne. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Rémy Degenne
! This file was ported from Lean 3 source module measure_theory.function.ess_sup
! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
import Mathlib.Order.Filter.ENNReal

/-!
# Essential supremum and infimum
We define the essential supremum and infimum of a function `f : α → β` with respect to a measure
`μ` on `α`. The essential supremum is the infimum of the constants `c : β` such that `f x ≤ c`
almost everywhere.
TODO: The essential supremum of functions `α → ℝ≥0∞` is used in particular to define the norm in
the `L∞` space (see MeasureTheory/LpSpace.lean).
There is a different quantity which is sometimes also called essential supremum: the least
upper-bound among measurable functions of a family of measurable functions (in an almost-everywhere
sense). We do not define that quantity here, which is simply the supremum of a map with values in
`α →ₘ[μ] β` (see MeasureTheory/AEEqFun.lean).
## Main definitions
* `essSup f μ := μ.ae.limsup f`
* `essInf f μ := μ.ae.liminf f`
-/


open MeasureTheory Filter Set TopologicalSpace

open ENNReal MeasureTheory NNReal

variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}

section ConditionallyCompleteLattice

variable [ConditionallyCompleteLattice β]

/-- Essential supremum of `f` with respect to measure `μ`: the smallest `c : β` such that
`f x ≤ c` a.e. -/
def essSup {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
μ.ae.limsup f
#align ess_sup essSup

/-- Essential infimum of `f` with respect to measure `μ`: the greatest `c : β` such that
`c ≤ f x` a.e. -/
def essInf {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
μ.ae.liminf f
#align ess_inf essInf

theorem essSup_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essSup f μ = essSup g μ :=
limsup_congr hfg
#align ess_sup_congr_ae essSup_congr_ae

theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = essInf g μ :=
@essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
#align ess_inf_congr_ae essInf_congr_ae

@[simp]
theorem essSup_const' [μ.ae.NeBot] (c : β) : essSup (fun _ : α => c) μ = c :=
limsup_const _
#align ess_sup_const' essSup_const'

@[simp]
theorem essInf_const' [μ.ae.NeBot] (c : β) : essInf (fun _ : α => c) μ = c :=
liminf_const _
#align ess_inf_const' essInf_const'

theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c := by
rw [← ae_neBot] at hμ
exact essSup_const' _
#align ess_sup_const essSup_const

theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun _ : α => c) μ = c := by
rw [← ae_neBot] at hμ
exact essInf_const' _
#align ess_inf_const essInf_const

end ConditionallyCompleteLattice

section ConditionallyCompleteLinearOrder

variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}

theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
essSup f μ = sInf { a | μ { x | a < f x } = 0 } := by
dsimp [essSup, limsup, limsSup]
simp only [eventually_map, ae_iff, not_le]
#align ess_sup_eq_Inf essSup_eq_sInf

theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
essInf f μ = sSup { a | μ { x | f x < a } = 0 } := by
dsimp [essInf, liminf, limsInf]
simp only [eventually_map, ae_iff, not_le]
#align ess_inf_eq_Sup essInf_eq_sSup

theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
∀ᵐ y ∂μ, f y < x :=
eventually_lt_of_limsup_lt hx hf
#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt

theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
∀ᵐ y ∂μ, x < f y :=
eventually_lt_of_lt_liminf hx hf
#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf

variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]

theorem ae_le_essSup
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
∀ᵐ y ∂μ, f y ≤ essSup f μ :=
eventually_le_limsup hf
#align ae_le_ess_sup ae_le_essSup

theorem ae_essInf_le
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
∀ᵐ y ∂μ, essInf f μ ≤ f y :=
eventually_liminf_le hf
#align ae_ess_inf_le ae_essInf_le

theorem meas_essSup_lt
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
μ { y | essSup f μ < f y } = 0 := by
simp_rw [← not_le]
exact ae_le_essSup hf
#align meas_ess_sup_lt meas_essSup_lt

theorem meas_lt_essInf
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
μ { y | f y < essInf f μ } = 0 := by
simp_rw [← not_le]
exact ae_essInf_le hf
#align meas_lt_ess_inf meas_lt_essInf

end ConditionallyCompleteLinearOrder

section CompleteLattice

variable [CompleteLattice β]

@[simp]
theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, EventuallyLE, ae_iff]))
#align ess_sup_measure_zero essSup_measure_zero

@[simp]
theorem essInf_measure_zero {_ : MeasurableSpace α} {f : α → β} : essInf f (0 : Measure α) = ⊤ :=
@essSup_measure_zero α βᵒᵈ _ _ _
#align ess_inf_measure_zero essInf_measure_zero

theorem essSup_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essSup f μ ≤ essSup g μ :=
limsup_le_limsup hfg
#align ess_sup_mono_ae essSup_mono_ae

theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ ≤ essInf g μ :=
liminf_le_liminf hfg
#align ess_inf_mono_ae essInf_mono_ae

theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c := by
refine' (essSup_mono_ae hf).trans _
by_cases hμ : μ = 0
· simp [hμ]
· rwa [essSup_const]
#align ess_sup_le_of_ae_le essSup_le_of_ae_le

theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
@essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
#align le_ess_inf_of_ae_le le_essInf_of_ae_le

theorem essSup_const_bot : essSup (fun _ : α => (⊥ : β)) μ = (⊥ : β) :=
limsup_const_bot
#align ess_sup_const_bot essSup_const_bot

theorem essInf_const_top : essInf (fun _ : α => (⊤ : β)) μ = (⊤ : β) :=
liminf_const_top
#align ess_inf_const_top essInf_const_top

theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
(μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ := by
refine' OrderIso.limsup_apply g _ _ _ _
all_goals isBoundedDefault
#align order_iso.ess_sup_apply OrderIso.essSup_apply

theorem OrderIso.essInf_apply {_ : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
(μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
@OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
#align order_iso.ess_inf_apply OrderIso.essInf_apply

theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ := by
refine' limsup_le_limsup_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) _ _
all_goals isBoundedDefault
#align ess_sup_mono_measure essSup_mono_measure

theorem essSup_mono_measure' {α : Type _} {β : Type _} {_ : MeasurableSpace α}
{μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
essSup f ν ≤ essSup f μ :=
essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
#align ess_sup_mono_measure' essSup_mono_measure'

theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ := by
refine' liminf_le_liminf_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) _ _
all_goals isBoundedDefault
#align ess_inf_antitone_measure essInf_antitone_measure

theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) :
essSup f (c • μ) = essSup f μ := by
simp_rw [essSup]
suffices h_smul : (c • μ).ae = μ.ae; · rw [h_smul]
ext1
simp_rw [mem_ae_iff]
simp [hc]
#align ess_sup_smul_measure essSup_smul_measure

section TopologicalSpace

variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β}

theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) := by
refine' limsSup_le_limsSup_of_le (fun t => _) (by isBoundedDefault) (by isBoundedDefault)
simp_rw [Filter.mem_map]
have : g ∘ f ⁻¹' t = f ⁻¹' (g ⁻¹' t) := by
ext1 x
simp_rw [Set.mem_preimage, Function.comp]
rw [this]
exact fun h => mem_ae_of_mem_ae_map hf h
#align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure

theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf.measurable.aemeasurable)
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_le => _)
rw [eventually_map] at h_le ⊢
exact hf.ae_map_iff.mpr h_le
#align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measure

variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
[OrderClosedTopology β] [OpensMeasurableSpace β]

theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable f μ) :
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf)
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_le => _)
rw [eventually_map] at h_le ⊢
rw [ae_map_iff hf (measurableSet_le hg measurable_const)]
exact h_le
#align ess_sup_map_measure_of_measurable essSup_map_measure_of_measurable

theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
rw [essSup_congr_ae hg.ae_eq_mk, essSup_map_measure_of_measurable hg.measurable_mk hf]
refine' essSup_congr_ae _
have h_eq := ae_of_ae_map hf hg.ae_eq_mk
rw [← EventuallyEq] at h_eq
exact h_eq.symm
#align ess_sup_map_measure essSup_map_measure

end TopologicalSpace

end CompleteLattice

section CompleteLinearOrder

variable [CompleteLinearOrder β]
theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
(hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
essSup (s.indicator f) μ = essSup f (μ.restrict s) := by
refine'
le_antisymm _
(limsSup_le_limsSup_of_le (map_restrict_ae_le_map_indicator_ae hs)
(by isBoundedDefault) (by isBoundedDefault) )
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_restrict_le => _)
rw [eventually_map] at h_restrict_le⊢
rw [ae_restrict_iff' hs] at h_restrict_le
have hc : 0 ≤ c := by
rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c
exact hx.1.trans hx.2
refine' Frequently.exists _
· exact μ.ae
rw [EventuallyLE, ae_restrict_iff' hs] at hf
have hs' : ∃ᵐ x ∂μ, x ∈ s := by
contrapose! hs_not_null
rw [not_frequently, ae_iff] at hs_not_null
suffices { a : α | ¬a ∉ s } = s by rwa [← this]
simp
refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
rw [Pi.zero_apply] at hxf_nonneg
exact ⟨hxf_nonneg hxs, hxs_imp_c hxs⟩
refine' h_restrict_le.mono fun x hxc => _
by_cases hxs : x ∈ s
· simpa [hxs] using hxc hxs
· simpa [hxs] using hc
#align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict

end CompleteLinearOrder

namespace ENNReal

variable {f : α → ℝ≥0∞}

theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
eventually_le_limsup f
#align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup

@[simp]
theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
limsup_eq_zero_iff
#align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff

theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
limsup_const_mul
#align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul

theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
limsup_mul_le f g
#align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le

theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
limsup_add_le f g
#align ennreal.ess_sup_add_le ENNReal.essSup_add_le

theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
essSup (fun x => atTop.liminf fun n => f n x) μ ≤
atTop.liminf fun n => essSup (fun x => f n x) μ := by
simp_rw [essSup]
exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
#align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le

theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
((essSup f μ : ℝ≥0) : ℝ≥0∞) = essSup (fun x => (f x : ℝ≥0∞)) μ :=
(ENNReal.coe_sInf <| hf).trans <|
eq_of_forall_le_iff fun r => by
simp [essSup, limsup, limsSup, eventually_map, ENNReal.forall_ennreal]; rfl
#align ennreal.coe_ess_sup ENNReal.coe_essSup

end ENNReal

0 comments on commit 3c3ab91

Please sign in to comment.