Skip to content

Commit

Permalink
feat: port RingTheory.RingHom.FiniteType (#5075)
Browse files Browse the repository at this point in the history
  • Loading branch information
xroblot committed Jun 16, 2023
1 parent bef1721 commit 4cf5b94
Show file tree
Hide file tree
Showing 2 changed files with 107 additions and 0 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Expand Up @@ -2544,6 +2544,7 @@ import Mathlib.RingTheory.QuotientNilpotent
import Mathlib.RingTheory.QuotientNoetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.RingHom.Finite
import Mathlib.RingTheory.RingHom.FiniteType
import Mathlib.RingTheory.RingHom.Integral
import Mathlib.RingTheory.RingHom.Surjective
import Mathlib.RingTheory.RingHomProperties
Expand Down
106 changes: 106 additions & 0 deletions Mathlib/RingTheory/RingHom/FiniteType.lean
@@ -0,0 +1,106 @@
/-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
! This file was ported from Lean 3 source module ring_theory.ring_hom.finite_type
! leanprover-community/mathlib commit 64fc7238fb41b1a4f12ff05e3d5edfa360dd768c
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.RingTheory.LocalProperties
import Mathlib.RingTheory.Localization.InvSubmonoid

/-!
# The meta properties of finite-type ring homomorphisms.
The main result is `RingHom.finiteType_is_local`.
-/


namespace RingHom

open scoped Pointwise

theorem finiteType_stableUnderComposition : StableUnderComposition @FiniteType := by
introv R hf hg
exact hg.comp hf
#align ring_hom.finite_type_stable_under_composition RingHom.finiteType_stableUnderComposition

theorem finiteType_holdsForLocalizationAway : HoldsForLocalizationAway @FiniteType := by
introv R _
suffices Algebra.FiniteType R S by
rw [RingHom.FiniteType]
convert this; ext;
rw [Algebra.smul_def]; rfl
exact IsLocalization.finiteType_of_monoid_fg (Submonoid.powers r) S
#align ring_hom.finite_type_holds_for_localization_away RingHom.finiteType_holdsForLocalizationAway

theorem finiteType_ofLocalizationSpanTarget : OfLocalizationSpanTarget @FiniteType := by
-- Setup algebra intances.
rw [ofLocalizationSpanTarget_iff_finite]
introv R hs H
classical
letI := f.toAlgebra
replace H : ∀ r : s, Algebra.FiniteType R (Localization.Away (r : S))
· intro r; simp_rw [RingHom.FiniteType] at H; convert H r; ext; simp_rw [Algebra.smul_def]; rfl
replace H := fun r => (H r).1
constructor
-- Suppose `s : Finset S` spans `S`, and each `Sᵣ` is finitely generated as an `R`-algebra.
-- Say `t r : Finset Sᵣ` generates `Sᵣ`. By assumption, we may find `lᵢ` such that
-- `∑ lᵢ * sᵢ = 1`. I claim that all `s` and `l` and the numerators of `t` and generates `S`.
choose t ht using H
obtain ⟨l, hl⟩ :=
(Finsupp.mem_span_iff_total S (s : Set S) 1).mp
(show (1 : S) ∈ Ideal.span (s : Set S) by rw [hs]; trivial)
let sf := fun x : s => IsLocalization.finsetIntegerMultiple (Submonoid.powers (x : S)) (t x)
use s.attach.biUnion sf ∪ s ∪ l.support.image l
rw [eq_top_iff]
-- We need to show that every `x` falls in the subalgebra generated by those elements.
-- Since all `s` and `l` are in the subalgebra, it suffices to check that `sᵢ ^ nᵢ • x` falls in
-- the algebra for each `sᵢ` and some `nᵢ`.
rintro x -
apply Subalgebra.mem_of_span_eq_top_of_smul_pow_mem _ (s : Set S) l hl _ _ x _
· intro x hx
apply Algebra.subset_adjoin
rw [Finset.coe_union, Finset.coe_union]
exact Or.inl (Or.inr hx)
· intro i
by_cases h : l i = 0; · rw [h]; exact zero_mem _
apply Algebra.subset_adjoin
rw [Finset.coe_union, Finset.coe_image]
exact Or.inr (Set.mem_image_of_mem _ (Finsupp.mem_support_iff.mpr h))
· intro r
rw [Finset.coe_union, Finset.coe_union, Finset.coe_biUnion]
-- Since all `sᵢ` and numerators of `t r` are in the algebra, it suffices to show that the
-- image of `x` in `Sᵣ` falls in the `R`-adjoin of `t r`, which is of course true.
-- Porting note: The following `obtain` fails because Lean wants to know right away what the
-- placeholders are, so we need to provide a little more guidance
-- obtain ⟨⟨_, n₂, rfl⟩, hn₂⟩ := IsLocalization.exists_smul_mem_of_mem_adjoin
-- (Submonoid.powers (r : S)) x (t r) (Algebra.adjoin R _) _ _ _
rw [show ∀ A : Set S, (∃ n, (r : S) ^ n • x ∈ Algebra.adjoin R A) ↔
(∃ m : (Submonoid.powers (r : S)), (m : S) • x ∈ Algebra.adjoin R A) by
{ exact fun _ => by simp [Submonoid.mem_powers_iff] }]
refine IsLocalization.exists_smul_mem_of_mem_adjoin
(Submonoid.powers (r : S)) x (t r) (Algebra.adjoin R _) ?_ ?_ ?_
· intro x hx
apply Algebra.subset_adjoin
exact Or.inl (Or.inl ⟨_, ⟨r, rfl⟩, _, ⟨s.mem_attach r, rfl⟩, hx⟩)
· rw [Submonoid.powers_eq_closure, Submonoid.closure_le, Set.singleton_subset_iff]
apply Algebra.subset_adjoin
exact Or.inl (Or.inr r.2)
· rw [ht]; trivial
#align ring_hom.finite_type_of_localization_span_target RingHom.finiteType_ofLocalizationSpanTarget

theorem finiteType_is_local : PropertyIsLocal @FiniteType :=
⟨localization_finiteType, finiteType_ofLocalizationSpanTarget, finiteType_stableUnderComposition,
finiteType_holdsForLocalizationAway⟩
#align ring_hom.finite_type_is_local RingHom.finiteType_is_local

theorem finiteType_respectsIso : RingHom.RespectsIso @RingHom.FiniteType :=
RingHom.finiteType_is_local.respectsIso
#align ring_hom.finite_type_respects_iso RingHom.finiteType_respectsIso

end RingHom

0 comments on commit 4cf5b94

Please sign in to comment.