Skip to content

Commit

Permalink
chore: fix grammar 2/3 (#5002)
Browse files Browse the repository at this point in the history
Part 2 of #5001
  • Loading branch information
int-y1 committed Jun 13, 2023
1 parent d8caa37 commit 9e80ae3
Show file tree
Hide file tree
Showing 77 changed files with 133 additions and 133 deletions.
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Limits/Preserves/Shapes/Terminal.lean
Expand Up @@ -161,15 +161,15 @@ def preservesColimitsOfShapePemptyOfPreservesInitial [PreservesColimit (Functor.

variable [HasInitial C]

/-- If `G` preserves the initial object and `C` has a initial object, then the image of the initial
/-- If `G` preserves the initial object and `C` has an initial object, then the image of the initial
object is initial.
-/
def isColimitOfHasInitialOfPreservesColimit [PreservesColimit (Functor.empty.{0} C) G] :
IsInitial (G.obj (⊥_ C)) :=
initialIsInitial.isInitialObj G (⊥_ C)
#align category_theory.limits.is_colimit_of_has_initial_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasInitialOfPreservesColimit

/-- If `C` has a initial object and `G` preserves initial objects, then `D` has a initial object
/-- If `C` has an initial object and `G` preserves initial objects, then `D` has an initial object
also.
Note this property is somewhat unique to colimits of the empty diagram: for general `J`, if `C`
has colimits of shape `J` and `G` preserves them, then `D` does not necessarily have colimits of
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
Expand Up @@ -905,7 +905,7 @@ theorem coprod.map_id_comp {X Y Z W : C} (f : X ⟶ Y) (g : Y ⟶ Z) [HasBinaryC
#align category_theory.limits.coprod.map_id_comp CategoryTheory.Limits.coprod.map_id_comp

/-- If the coproducts `W ⨿ X` and `Y ⨿ Z` exist, then every pair of isomorphisms `f : W ≅ Y` and
`g : W ≅ Z` induces a isomorphism `coprod.mapIso f g : W ⨿ X ≅ Y ⨿ Z`. -/
`g : W ≅ Z` induces an isomorphism `coprod.mapIso f g : W ⨿ X ≅ Y ⨿ Z`. -/
@[simps]
def coprod.mapIso {W X Y Z : C} [HasBinaryCoproduct W X] [HasBinaryCoproduct Y Z] (f : W ≅ Y)
(g : X ≅ Z) : W ⨿ X ≅ Y ⨿ Z where
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
Expand Up @@ -406,7 +406,7 @@ theorem biproduct.bicone_ι (f : J → C) [HasBiproduct f] (b : J) :
(biproduct.bicone f).ι b = biproduct.ι f b := rfl
#align category_theory.limits.biproduct.bicone_ι CategoryTheory.Limits.biproduct.bicone_ι

/-- Note that as this lemma has a `if` in the statement, we include a `DecidableEq` argument.
/-- Note that as this lemma has an `if` in the statement, we include a `DecidableEq` argument.
This means you may not be able to `simp` using this lemma unless you `open Classical`. -/
@[reassoc]
theorem biproduct.ι_π [DecidableEq J] (f : J → C) [HasBiproduct f] (j j' : J) :
Expand Down Expand Up @@ -946,7 +946,7 @@ instance (priority := 100) hasBiproduct_unique : HasBiproduct f :=
HasBiproduct.mk (limitBiconeOfUnique f)
#align category_theory.limits.has_biproduct_unique CategoryTheory.Limits.hasBiproduct_unique

/-- A biproduct over a index type with exactly one term is just the object over that term. -/
/-- A biproduct over an index type with exactly one term is just the object over that term. -/
@[simps!]
def biproductUniqueIso : ⨁ f ≅ f default :=
(biproduct.uniqueUpToIso _ (limitBiconeOfUnique f).isBilimit).symm
Expand Down
12 changes: 6 additions & 6 deletions Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
Expand Up @@ -200,7 +200,7 @@ namespace IsPullback
variable {P X Y Z : C} {fst : P ⟶ X} {snd : P ⟶ Y} {f : X ⟶ Z} {g : Y ⟶ Z}

/-- The (limiting) `PullbackCone f g` implicit in the statement
that we have a `IsPullback fst snd f g`.
that we have an `IsPullback fst snd f g`.
-/
def cone (h : IsPullback fst snd f g) : PullbackCone f g :=
h.toCommSq.cone
Expand All @@ -222,7 +222,7 @@ noncomputable def isLimit (h : IsPullback fst snd f g) : IsLimit h.cone :=
h.isLimit'.some
#align category_theory.is_pullback.is_limit CategoryTheory.IsPullback.isLimit

/-- If `c` is a limiting pullback cone, then we have a `IsPullback c.fst c.snd f g`. -/
/-- If `c` is a limiting pullback cone, then we have an `IsPullback c.fst c.snd f g`. -/
theorem of_isLimit {c : PullbackCone f g} (h : Limits.IsLimit c) : IsPullback c.fst c.snd f g :=
{ w := c.condition
isLimit' := ⟨IsLimit.ofIsoLimit h (Limits.PullbackCone.ext (Iso.refl _)
Expand All @@ -235,7 +235,7 @@ theorem of_isLimit' (w : CommSq fst snd f g) (h : Limits.IsLimit w.cone) :
of_isLimit h
#align category_theory.is_pullback.of_is_limit' CategoryTheory.IsPullback.of_isLimit'

/-- The pullback provided by `HasPullback f g` fits into a `IsPullback`. -/
/-- The pullback provided by `HasPullback f g` fits into an `IsPullback`. -/
theorem of_hasPullback (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] :
IsPullback (pullback.fst : pullback f g ⟶ X) (pullback.snd : pullback f g ⟶ Y) f g :=
of_isLimit (limit.isLimit (cospan f g))
Expand Down Expand Up @@ -331,7 +331,7 @@ namespace IsPushout
variable {Z X Y P : C} {f : Z ⟶ X} {g : Z ⟶ Y} {inl : X ⟶ P} {inr : Y ⟶ P}

/-- The (colimiting) `PushoutCocone f g` implicit in the statement
that we have a `IsPushout f g inl inr`.
that we have an `IsPushout f g inl inr`.
-/
def cocone (h : IsPushout f g inl inr) : PushoutCocone f g :=
h.toCommSq.cocone
Expand All @@ -353,7 +353,7 @@ noncomputable def isColimit (h : IsPushout f g inl inr) : IsColimit h.cocone :=
h.isColimit'.some
#align category_theory.is_pushout.is_colimit CategoryTheory.IsPushout.isColimit

/-- If `c` is a colimiting pushout cocone, then we have a `IsPushout f g c.inl c.inr`. -/
/-- If `c` is a colimiting pushout cocone, then we have an `IsPushout f g c.inl c.inr`. -/
theorem of_isColimit {c : PushoutCocone f g} (h : Limits.IsColimit c) : IsPushout f g c.inl c.inr :=
{ w := c.condition
isColimit' :=
Expand All @@ -367,7 +367,7 @@ theorem of_isColimit' (w : CommSq f g inl inr) (h : Limits.IsColimit w.cocone) :
of_isColimit h
#align category_theory.is_pushout.of_is_colimit' CategoryTheory.IsPushout.of_isColimit'

/-- The pushout provided by `HasPushout f g` fits into a `IsPushout`. -/
/-- The pushout provided by `HasPushout f g` fits into an `IsPushout`. -/
theorem of_hasPushout (f : Z ⟶ X) (g : Z ⟶ Y) [HasPushout f g] :
IsPushout f g (pushout.inl : X ⟶ pushout f g) (pushout.inr : Y ⟶ pushout f g) :=
of_isColimit (colimit.isColimit (span f g))
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/Products.lean
Expand Up @@ -379,7 +379,7 @@ instance (priority := 100) hasCoproduct_unique : HasCoproduct f :=
HasColimit.mk (colimitCoconeOfUnique f)
#align category_theory.limits.has_coproduct_unique CategoryTheory.Limits.hasCoproduct_unique

/-- A coproduct over a index type with exactly one term is just the object over that term. -/
/-- A coproduct over an index type with exactly one term is just the object over that term. -/
@[simps!]
def coproductUniqueIso : ∐ f ≅ f default :=
IsColimit.coconePointUniqueUpToIso (colimit.isColimit _) (colimitCoconeOfUnique f).isColimit
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
Expand Up @@ -255,7 +255,7 @@ theorem span_map_id {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) (w : WalkingSpan) :
(span f g).map (WalkingSpan.Hom.id w) = 𝟙 _ := rfl
#align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_id

/-- Every diagram indexing an pullback is naturally isomorphic (actually, equal) to a `cospan` -/
/-- Every diagram indexing a pullback is naturally isomorphic (actually, equal) to a `cospan` -/
-- @[simps (config := { rhsMd := semireducible })] Porting note: no semireducible
@[simps!]
def diagramIsoCospan (F : WalkingCospan ⥤ C) : F ≅ cospan (F.map inl) (F.map inr) :=
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/CategoryTheory/Limits/Shapes/Terminal.lean
Expand Up @@ -494,7 +494,7 @@ theorem ι_colimitConstInitial_hom {J : Type _} [Category J] {C : Type _} [Categ
initial.to _ := by apply Limits.colimit.hom_ext; aesop_cat
#align category_theory.limits.ι_colimit_const_initial_hom CategoryTheory.Limits.ι_colimitConstInitial_hom

/-- A category is a `InitialMonoClass` if the canonical morphism of an initial object is a
/-- A category is an `InitialMonoClass` if the canonical morphism of an initial object is a
monomorphism. In practice, this is most useful when given an arbitrary morphism out of the chosen
initial object, see `initial.mono_from`.
Given a terminal object, this is equivalent to the assumption that the unique morphism from initial
Expand All @@ -519,7 +519,7 @@ instance (priority := 100) initial.mono_from [HasInitial C] [InitialMonoClass C]
initialIsInitial.mono_from f
#align category_theory.limits.initial.mono_from CategoryTheory.Limits.initial.mono_from

/-- To show a category is a `InitialMonoClass` it suffices to give an initial object such that
/-- To show a category is an `InitialMonoClass` it suffices to give an initial object such that
every morphism out of it is a monomorphism. -/
theorem InitialMonoClass.of_isInitial {I : C} (hI : IsInitial I) (h : ∀ X, Mono (hI.to X)) :
InitialMonoClass C where
Expand All @@ -529,21 +529,21 @@ theorem InitialMonoClass.of_isInitial {I : C} (hI : IsInitial I) (h : ∀ X, Mon
apply mono_comp
#align category_theory.limits.initial_mono_class.of_is_initial CategoryTheory.Limits.InitialMonoClass.of_isInitial

/-- To show a category is a `InitialMonoClass` it suffices to show every morphism out of the
/-- To show a category is an `InitialMonoClass` it suffices to show every morphism out of the
initial object is a monomorphism. -/
theorem InitialMonoClass.of_initial [HasInitial C] (h : ∀ X : C, Mono (initial.to X)) :
InitialMonoClass C :=
InitialMonoClass.of_isInitial initialIsInitial h
#align category_theory.limits.initial_mono_class.of_initial CategoryTheory.Limits.InitialMonoClass.of_initial

/-- To show a category is a `InitialMonoClass` it suffices to show the unique morphism from an
/-- To show a category is an `InitialMonoClass` it suffices to show the unique morphism from an
initial object to a terminal object is a monomorphism. -/
theorem InitialMonoClass.of_isTerminal {I T : C} (hI : IsInitial I) (hT : IsTerminal T)
(_ : Mono (hI.to T)) : InitialMonoClass C :=
InitialMonoClass.of_isInitial hI fun X => mono_of_mono_fac (hI.hom_ext (_ ≫ hT.from X) (hI.to T))
#align category_theory.limits.initial_mono_class.of_is_terminal CategoryTheory.Limits.InitialMonoClass.of_isTerminal

/-- To show a category is a `InitialMonoClass` it suffices to show the unique morphism from the
/-- To show a category is an `InitialMonoClass` it suffices to show the unique morphism from the
initial object to a terminal object is a monomorphism. -/
theorem InitialMonoClass.of_terminal [HasInitial C] [HasTerminal C] (h : Mono (initial.to (⊤_ C))) :
InitialMonoClass C :=
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/Types.lean
Expand Up @@ -304,7 +304,7 @@ theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) :
split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm
#align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff

/-- Any monomorphism in `Type` is an coproduct injection. -/
/-- Any monomorphism in `Type` is a coproduct injection. -/
noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] :
IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range fᶜ) → Y)) := by
apply Nonempty.some
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
Expand Up @@ -431,7 +431,7 @@ theorem idZeroEquivIsoZero_apply_inv (X : C) (h : 𝟙 X = 0) : ((idZeroEquivIso
rfl
#align category_theory.limits.id_zero_equiv_iso_zero_apply_inv CategoryTheory.Limits.idZeroEquivIsoZero_apply_inv

/-- If `0 : X ⟶ Y` is an monomorphism, then `X ≅ 0`. -/
/-- If `0 : X ⟶ Y` is a monomorphism, then `X ≅ 0`. -/
@[simps]
def isoZeroOfMonoZero {X Y : C} (h : Mono (0 : X ⟶ Y)) : X ≅ 0 where
hom := 0
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Monoidal/Category.lean
Expand Up @@ -543,7 +543,7 @@ variable (C : Type u) [Category.{v} C] [MonoidalCategory.{v} C]

/-- Tensoring on the left, as a functor from `C` into endofunctors of `C`.
TODO: show this is a op-monoidal functor.
TODO: show this is an op-monoidal functor.
-/
@[simps]
def tensoringLeft : C ⥤ C ⥤ C where
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/CategoryTheory/Over.lean
Expand Up @@ -473,8 +473,8 @@ theorem mono_of_mono_right {f g : Under X} (k : f ⟶ g) [hk : Mono k.right] : M
#align category_theory.under.mono_of_mono_right CategoryTheory.Under.mono_of_mono_right

/--
If `k.right` is a epimorphism, then `k` is a epimorphism. In other words, `Under.forget X` reflects
epimorphisms.
If `k.right` is an epimorphism, then `k` is an epimorphism. In other words, `Under.forget X`
reflects epimorphisms.
The converse of `CategoryTheory.Under.epi_right_of_epi`.
This lemma is not an instance, to avoid loops in type class inference.
Expand All @@ -484,8 +484,8 @@ theorem epi_of_epi_right {f g : Under X} (k : f ⟶ g) [hk : Epi k.right] : Epi
#align category_theory.under.epi_of_epi_right CategoryTheory.Under.epi_of_epi_right

/--
If `k` is a epimorphism, then `k.right` is a epimorphism. In other words, `Under.forget X` preserves
epimorphisms.
If `k` is an epimorphism, then `k.right` is an epimorphism. In other words, `Under.forget X`
preserves epimorphisms.
The converse of `CategoryTheory.under.epi_of_epi_right`.
-/
instance epi_right_of_epi {f g : Under X} (k : f ⟶ g) [Epi k] : Epi k.right := by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Pi/Basic.lean
Expand Up @@ -77,7 +77,7 @@ instance (f : J → I) : (j : J) → Category ((C ∘ f) j) := by
dsimp
infer_instance

/-- Pull back an `I`-indexed family of objects to an `J`-indexed family, along a function `J → I`.
/-- Pull back an `I`-indexed family of objects to a `J`-indexed family, along a function `J → I`.
-/
@[simps]
def comap (h : J → I) : (∀ i, C i) ⥤ (∀ j, C (h j)) where
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Preadditive/Injective.lean
Expand Up @@ -216,7 +216,7 @@ section EnoughInjectives
variable [EnoughInjectives C]

/-- `Injective.under X` provides an arbitrarily chosen injective object equipped with
an monomorphism `Injective.ι : X ⟶ Injective.under X`.
a monomorphism `Injective.ι : X ⟶ Injective.under X`.
-/
def under (X : C) : C :=
(EnoughInjectives.presentation X).some.J
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Preadditive/InjectiveResolution.lean
Expand Up @@ -14,7 +14,7 @@ import Mathlib.Algebra.Homology.Single
/-!
# Injective resolutions
A injective resolution `I : InjectiveResolution Z` of an object `Z : C` consists of
An injective resolution `I : InjectiveResolution Z` of an object `Z : C` consists of
a `ℕ`-indexed cochain complex `I.cocomplex` of injective objects,
along with a cochain map `I.ι` from cochain complex consisting just of `Z` in degree zero to `C`,
so that the augmented cochain complex is exact.
Expand Down Expand Up @@ -71,7 +71,7 @@ attribute [inherit_doc InjectiveResolution]

attribute [instance] InjectiveResolution.injective InjectiveResolution.mono

/-- An object admits a injective resolution. -/
/-- An object admits an injective resolution. -/
class HasInjectiveResolution (Z : C) : Prop where
out : Nonempty (InjectiveResolution Z)
#align category_theory.has_injective_resolution CategoryTheory.HasInjectiveResolution
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Shift/Basic.lean
Expand Up @@ -24,7 +24,7 @@ would be the degree `i+n`-th term of `C`.
## Main definitions
* `HasShift`: A typeclass asserting the existence of a shift functor.
* `shiftEquiv`: When the indexing monoid is a group, then the functor indexed by `n` and `-n` forms
an self-equivalence of `C`.
a self-equivalence of `C`.
* `shiftComm`: When the indexing monoid is commutative, then shifts commute as well.
## Implementation Notes
Expand Down
16 changes: 8 additions & 8 deletions Mathlib/CategoryTheory/Sites/DenseSubsite.lean
Expand Up @@ -126,8 +126,8 @@ theorem functorPullback_pushforward_covering [Full G] (H : CoverDense K G) {X :
· simp
#align category_theory.cover_dense.functor_pullback_pushforward_covering CategoryTheory.CoverDense.functorPullback_pushforward_covering

/-- (Implementation). Given an hom between the pullbacks of two sheaves, we can whisker it with
`coyoneda` to obtain an hom between the pullbacks of the sheaves of maps from `X`.
/-- (Implementation). Given a hom between the pullbacks of two sheaves, we can whisker it with
`coyoneda` to obtain a hom between the pullbacks of the sheaves of maps from `X`.
-/
@[simps!]
def homOver {ℱ : Dᵒᵖ ⥤ A} {ℱ' : Sheaf K A} (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) (X : A) :
Expand Down Expand Up @@ -259,7 +259,7 @@ noncomputable def appIso {ℱ ℱ' : SheafOfTypes.{v} K} (i : G.op ⋙ ℱ.val
simp
#align category_theory.cover_dense.types.app_iso CategoryTheory.CoverDense.Types.appIso

/-- Given an natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of types, where `G` is
/-- Given a natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of types, where `G` is
full and cover-dense, and `ℱ'` is a sheaf, we may obtain a natural transformation between sheaves.
-/
@[simps]
Expand All @@ -273,7 +273,7 @@ noncomputable def presheafHom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) : ℱ
-- porting note: Lean 3 proof continued with a rewrite but we're done here
#align category_theory.cover_dense.types.presheaf_hom CategoryTheory.CoverDense.Types.presheafHom

/-- Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full
/-- Given a natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full
and cover-dense, and `ℱ, ℱ'` are sheaves, we may obtain a natural isomorphism between presheaves.
-/
@[simps!]
Expand All @@ -282,7 +282,7 @@ noncomputable def presheafIso {ℱ ℱ' : SheafOfTypes.{v} K} (i : G.op ⋙ ℱ.
NatIso.ofComponents (fun X => appIso H i (unop X)) @(presheafHom H i.hom).naturality
#align category_theory.cover_dense.types.presheaf_iso CategoryTheory.CoverDense.Types.presheafIso

/-- Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full
/-- Given a natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full
and cover-dense, and `ℱ, ℱ'` are sheaves, we may obtain a natural isomorphism between sheaves.
-/
@[simps]
Expand Down Expand Up @@ -350,7 +350,7 @@ noncomputable def sheafYonedaHom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) :
exact congr_fun ((α.app X).naturality i) x
#align category_theory.cover_dense.sheaf_yoneda_hom CategoryTheory.CoverDense.sheafYonedaHom

/-- Given an natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of arbitrary category,
/-- Given a natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ'` is a sheaf, we may obtain a natural transformation
between presheaves.
-/
Expand All @@ -360,7 +360,7 @@ noncomputable def sheafHom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) : ℱ ⟶
naturality := fun X Y f => yoneda.map_injective (by simpa using α'.naturality f) }
#align category_theory.cover_dense.sheaf_hom CategoryTheory.CoverDense.sheafHom

/-- Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
/-- Given a natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ', ℱ` are sheaves,
we may obtain a natural isomorphism between presheaves.
-/
Expand All @@ -384,7 +384,7 @@ noncomputable def presheafIso {ℱ ℱ' : Sheaf K A} (i : G.op ⋙ ℱ.val ≅ G
apply asIso (sheafHom H i.hom)
#align category_theory.cover_dense.presheaf_iso CategoryTheory.CoverDense.presheafIso

/-- Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
/-- Given a natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ', ℱ` are sheaves,
we may obtain a natural isomorphism between presheaves.
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Sites/Grothendieck.lean
Expand Up @@ -518,7 +518,7 @@ structure Relation (S : J.Cover X) where

attribute [reassoc] Relation.w

/-- Map a `Arrow` along a refinement `S ⟶ T`. -/
/-- Map an `Arrow` along a refinement `S ⟶ T`. -/
@[simps]
def Arrow.map {S T : J.Cover X} (I : S.Arrow) (f : S ⟶ T) : T.Arrow :=
⟨I.Y, I.f, f.le _ I.hf⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Sites/Subsheaf.lean
Expand Up @@ -161,7 +161,7 @@ def Subpresheaf.sieveOfSection {U : Cᵒᵖ} (s : F.obj U) : Sieve (unop U) wher
exact G.map _ hi
#align category_theory.grothendieck_topology.subpresheaf.sieve_of_section CategoryTheory.GrothendieckTopology.Subpresheaf.sieveOfSection

/-- Given a `F`-section `s` on `U` and a subpresheaf `G`, we may define a family of elements in
/-- Given an `F`-section `s` on `U` and a subpresheaf `G`, we may define a family of elements in
`G` consisting of the restrictions of `s` -/
def Subpresheaf.familyOfElementsOfSection {U : Cᵒᵖ} (s : F.obj U) :
(G.sieveOfSection s).1.FamilyOfElements G.toPresheaf := fun _ i hi => ⟨F.map i.op s, hi⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Subobject/Lattice.lean
Expand Up @@ -513,7 +513,7 @@ section SemilatticeSup

variable [HasImages C] [HasBinaryCoproducts C]

/-- The functorial supremum on `MonoOver A` descends to an supremum on `Subobject A`. -/
/-- The functorial supremum on `MonoOver A` descends to a supremum on `Subobject A`. -/
def sup {A : C} : Subobject A ⥤ Subobject A ⥤ Subobject A :=
ThinSkeleton.map₂ MonoOver.sup
#align category_theory.subobject.sup CategoryTheory.Subobject.sup
Expand Down

0 comments on commit 9e80ae3

Please sign in to comment.