Skip to content

Commit

Permalink
feat(Analysis/SpecialFunctions/Pow): powers of finite products (#6470)
Browse files Browse the repository at this point in the history
  • Loading branch information
eric-wieser committed Aug 9, 2023
1 parent b83a5a7 commit 9f2c078
Show file tree
Hide file tree
Showing 2 changed files with 63 additions and 0 deletions.
60 changes: 60 additions & 0 deletions Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
Expand Up @@ -138,6 +138,66 @@ theorem mul_rpow {x y : ℝ≥0} {z : ℝ} : (x * y) ^ z = x ^ z * y ^ z :=
NNReal.eq <| Real.mul_rpow x.2 y.2
#align nnreal.mul_rpow NNReal.mul_rpow

/-- `rpow` as a `MonoidHom`-/
@[simps]
def rpowMonoidHom (r : ℝ) : ℝ≥0 →* ℝ≥0 where
toFun := (· ^ r)
map_one' := one_rpow _
map_mul' _x _y := mul_rpow

/-- `rpow` variant of `List.prod_map_pow` for `ℝ≥0`-/
theorem list_prod_map_rpow (l : List ℝ≥0) (r : ℝ) :
(l.map (· ^ r)).prod = l.prod ^ r :=
l.prod_hom (rpowMonoidHom r)

theorem list_prod_map_rpow' {ι} (l : List ι) (f : ι → ℝ≥0) (r : ℝ) :
(l.map (f · ^ r)).prod = (l.map f).prod ^ r := by
rw [←list_prod_map_rpow, List.map_map]; rfl

/-- `rpow` version of `Multiset.prod_map_pow` for `ℝ≥0`. -/
lemma multiset_prod_map_rpow {ι} (s : Multiset ι) (f : ι → ℝ≥0) (r : ℝ) :
(s.map (f · ^ r)).prod = (s.map f).prod ^ r :=
s.prod_hom' (rpowMonoidHom r) _

/-- `rpow` version of `Finset.prod_pow` for `ℝ≥0`. -/
lemma finset_prod_rpow {ι} (s : Finset ι) (f : ι → ℝ≥0) (r : ℝ) :
(∏ i in s, f i ^ r) = (∏ i in s, f i) ^ r :=
multiset_prod_map_rpow _ _ _

-- note: these don't really belong here, but they're much easier to prove in terms of the above

section Real

/-- `rpow` version of `List.prod_map_pow` for `Real`. -/
theorem _root_.Real.list_prod_map_rpow (l : List ℝ) (hl : ∀ x ∈ l, (0 : ℝ) ≤ x) (r : ℝ) :
(l.map (· ^ r)).prod = l.prod ^ r := by
lift l to List ℝ≥0 using hl
have := congr_arg ((↑) : ℝ≥0 → ℝ) (NNReal.list_prod_map_rpow l r)
push_cast at this
rw [List.map_map] at this ⊢
exact_mod_cast this

theorem _root_.Real.list_prod_map_rpow' {ι} (l : List ι) (f : ι → ℝ)
(hl : ∀ i ∈ l, (0 : ℝ) ≤ f i) (r : ℝ) :
(l.map (f · ^ r)).prod = (l.map f).prod ^ r := by
rw [←Real.list_prod_map_rpow (l.map f) _ r, List.map_map]; rfl
simpa using hl

/-- `rpow` version of `Multiset.prod_map_pow`. -/
theorem _root_.Real.multiset_prod_map_rpow {ι} (s : Multiset ι) (f : ι → ℝ)
(hs : ∀ i ∈ s, (0 : ℝ) ≤ f i) (r : ℝ) :
(s.map (f · ^ r)).prod = (s.map f).prod ^ r := by
induction' s using Quotient.inductionOn with l
simpa using Real.list_prod_map_rpow' l f hs r

/-- `rpow` version of `Finset.prod_pow`. -/
theorem _root_.Real.finset_prod_rpow
{ι} (s : Finset ι) (f : ι → ℝ) (hs : ∀ i ∈ s, 0 ≤ f i) (r : ℝ) :
(∏ i in s, f i ^ r) = (∏ i in s, f i) ^ r :=
Real.multiset_prod_map_rpow s.val f hs r

end Real

theorem rpow_le_rpow {x y : ℝ≥0} {z : ℝ} (h₁ : x ≤ y) (h₂ : 0 ≤ z) : x ^ z ≤ y ^ z :=
Real.rpow_le_rpow x.2 h₁ h₂
#align nnreal.rpow_le_rpow NNReal.rpow_le_rpow
Expand Down
3 changes: 3 additions & 0 deletions Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Expand Up @@ -403,6 +403,9 @@ theorem log_rpow {x : ℝ} (hx : 0 < x) (y : ℝ) : log (x ^ y) = y * log x := b
rw [exp_log (rpow_pos_of_pos hx y), ← exp_log hx, mul_comm, rpow_def_of_pos (exp_pos (log x)) y]
#align real.log_rpow Real.log_rpow

/-! Note: lemmas about `(∏ i in s, f i ^ r)` such as `Real.finset_prod_rpow` are proved
in `Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean` instead. -/

/-!
## Order and monotonicity
-/
Expand Down

0 comments on commit 9f2c078

Please sign in to comment.