Skip to content

Commit

Permalink
feat: port Analysis.SpecialFunctions.Trigonometric.Bounds (#4768)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Jun 7, 2023
1 parent e91b6a8 commit bb248de
Show file tree
Hide file tree
Showing 2 changed files with 161 additions and 0 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -657,6 +657,7 @@ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Arctan
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv
Expand Down
160 changes: 160 additions & 0 deletions Mathlib/Analysis/SpecialFunctions/Trigonometric/Bounds.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
/-
Copyright (c) 2022 David Loeffler. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Loeffler
! This file was ported from Lean 3 source module analysis.special_functions.trigonometric.bounds
! leanprover-community/mathlib commit 2c1d8ca2812b64f88992a5294ea3dba144755cd1
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv

/-!
# Polynomial bounds for trigonometric functions
## Main statements
This file contains upper and lower bounds for real trigonometric functions in terms
of polynomials. See `Trigonometric.Basic` for more elementary inequalities, establishing
the ranges of these functions, and their monotonicity in suitable intervals.
Here we prove the following:
* `sin_lt`: for `x > 0` we have `sin x < x`.
* `sin_gt_sub_cube`: For `0 < x ≤ 1` we have `x - x ^ 3 / 4 < sin x`.
* `lt_tan`: for `0 < x < π/2` we have `x < tan x`.
* `cos_le_one_div_sqrt_sq_add_one` and `cos_lt_one_div_sqrt_sq_add_one`: for
`-3 * π / 2 ≤ x ≤ 3 * π / 2`, we have `cos x ≤ 1 / sqrt (x ^ 2 + 1)`, with strict inequality if
`x ≠ 0`. (This bound is not quite optimal, but not far off)
## Tags
sin, cos, tan, angle
-/


noncomputable section

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue #2220

open Set

namespace Real

open scoped Real

/-- For 0 < x, we have sin x < x. -/
theorem sin_lt {x : ℝ} (h : 0 < x) : sin x < x := by
cases' lt_or_le 1 x with h' h'
· exact (sin_le_one x).trans_lt h'
have hx : |x| = x := abs_of_nonneg h.le
have := le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx])
rw [sub_le_iff_le_add', hx] at this
apply this.trans_lt
rw [sub_add, sub_lt_self_iff, sub_pos, div_eq_mul_inv (x ^ 3)]
refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3)
apply pow_le_pow_of_le_one h.le h'
norm_num
#align real.sin_lt Real.sin_lt

/-- For 0 < x ≤ 1 we have x - x ^ 3 / 4 < sin x.
This is also true for x > 1, but it's nontrivial for x just above 1. This inequality is not
tight; the tighter inequality is sin x > x - x ^ 3 / 6 for all x > 0, but this inequality has
a simpler proof. -/
theorem sin_gt_sub_cube {x : ℝ} (h : 0 < x) (h' : x ≤ 1) : x - x ^ 3 / 4 < sin x := by
have hx : |x| = x := abs_of_nonneg h.le
have := neg_le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx])
rw [le_sub_iff_add_le, hx] at this
refine' lt_of_lt_of_le _ this
have : x ^ 3 / ↑4 - x ^ 3 / ↑6 = x ^ 3 * 12⁻¹ := by ring
rw [add_comm, sub_add, sub_neg_eq_add, sub_lt_sub_iff_left, ← lt_sub_iff_add_lt', this]
refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3)
apply pow_le_pow_of_le_one h.le h'
norm_num
#align real.sin_gt_sub_cube Real.sin_gt_sub_cube

/-- The derivative of `tan x - x` is `1/(cos x)^2 - 1` away from the zeroes of cos. -/
theorem deriv_tan_sub_id (x : ℝ) (h : cos x ≠ 0) :
deriv (fun y : ℝ => tan y - y) x = 1 / cos x ^ 2 - 1 :=
HasDerivAt.deriv <| by simpa using (hasDerivAt_tan h).add (hasDerivAt_id x).neg
#align real.deriv_tan_sub_id Real.deriv_tan_sub_id

/-- For all `0 < x < π/2` we have `x < tan x`.
This is proved by checking that the function `tan x - x` vanishes
at zero and has non-negative derivative. -/
theorem lt_tan {x : ℝ} (h1 : 0 < x) (h2 : x < π / 2) : x < tan x := by
let U := Ico 0 (π / 2)
have intU : interior U = Ioo 0 (π / 2) := interior_Ico
have half_pi_pos : 0 < π / 2 := div_pos pi_pos two_pos
have cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y := by
intro y hy
exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy)
have sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y := by
intro y hy
rw [intU] at hy
exact sin_pos_of_mem_Ioo (Ioo_subset_Ioo_right (div_le_self pi_pos.le one_le_two) hy)
have tan_cts_U : ContinuousOn tan U := by
apply ContinuousOn.mono continuousOn_tan
intro z hz
simp only [mem_setOf_eq]
exact (cos_pos hz).ne'
have tan_minus_id_cts : ContinuousOn (fun y : ℝ => tan y - y) U := tan_cts_U.sub continuousOn_id
have deriv_pos : ∀ y : ℝ, y ∈ interior U → 0 < deriv (fun y' : ℝ => tan y' - y') y := by
intro y hy
have := cos_pos (interior_subset hy)
simp only [deriv_tan_sub_id y this.ne', one_div, gt_iff_lt, sub_pos]
norm_cast
have bd2 : cos y ^ 2 < 1 := by
apply lt_of_le_of_ne y.cos_sq_le_one
rw [cos_sq']
simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne'
rwa [one_div, lt_inv, inv_one]
· exact zero_lt_one
simpa only [sq, mul_self_pos] using this.ne'
have mono := Convex.strictMonoOn_of_deriv_pos (convex_Ico 0 (π / 2)) tan_minus_id_cts deriv_pos
have zero_in_U : (0 : ℝ) ∈ U := by rwa [left_mem_Ico]
have x_in_U : x ∈ U := ⟨h1.le, h2⟩
simpa only [tan_zero, sub_zero, sub_pos] using mono zero_in_U x_in_U h1
#align real.lt_tan Real.lt_tan

theorem le_tan {x : ℝ} (h1 : 0 ≤ x) (h2 : x < π / 2) : x ≤ tan x := by
rcases eq_or_lt_of_le h1 with (rfl | h1')
· rw [tan_zero]
· exact le_of_lt (lt_tan h1' h2)
#align real.le_tan Real.le_tan

theorem cos_lt_one_div_sqrt_sq_add_one {x : ℝ} (hx1 : -(3 * π / 2) ≤ x) (hx2 : x ≤ 3 * π / 2)
(hx3 : x ≠ 0) : cos x < ↑1 / sqrt (x ^ 2 + 1) := by
suffices ∀ {y : ℝ} (_ : 0 < y) (_ : y ≤ 3 * π / 2), cos y < ↑1 / sqrt (y ^ 2 + 1) by
rcases lt_or_lt_iff_ne.mpr hx3.symm with ⟨h⟩
· exact this h hx2
· convert this (by linarith : 0 < -x) (by linarith) using 1
· rw [cos_neg]
· rw [neg_sq]
intro y hy1 hy2
have hy3 : ↑0 < y ^ 2 + 1 := by linarith [sq_nonneg y]
rcases lt_or_le y (π / 2) with (hy2' | hy1')
· -- Main case : `0 < y < π / 2`
have hy4 : 0 < cos y := cos_pos_of_mem_Ioo ⟨by linarith, hy2'⟩
rw [← abs_of_nonneg (cos_nonneg_of_mem_Icc ⟨by linarith, hy2'.le⟩), ←
abs_of_nonneg (one_div_nonneg.mpr (sqrt_nonneg _)), ← sq_lt_sq, div_pow, one_pow,
sq_sqrt hy3.le, lt_one_div (pow_pos hy4 _) hy3, ← inv_one_add_tan_sq hy4.ne', one_div,
inv_inv, add_comm, add_lt_add_iff_left, sq_lt_sq, abs_of_pos hy1,
abs_of_nonneg (tan_nonneg_of_nonneg_of_le_pi_div_two hy1.le hy2'.le)]
exact Real.lt_tan hy1 hy2'
· -- Easy case : `π / 2 ≤ y ≤ 3 * π / 2`
refine' lt_of_le_of_lt _ (one_div_pos.mpr <| sqrt_pos_of_pos hy3)
exact cos_nonpos_of_pi_div_two_le_of_le hy1' (by linarith [pi_pos])
#align real.cos_lt_one_div_sqrt_sq_add_one Real.cos_lt_one_div_sqrt_sq_add_one

theorem cos_le_one_div_sqrt_sq_add_one {x : ℝ} (hx1 : -(3 * π / 2) ≤ x) (hx2 : x ≤ 3 * π / 2) :
cos x ≤ ↑1 / sqrt (x ^ 2 + 1) := by
rcases eq_or_ne x 0 with (rfl | hx3)
· simp
· exact (cos_lt_one_div_sqrt_sq_add_one hx1 hx2 hx3).le
#align real.cos_le_one_div_sqrt_sq_add_one Real.cos_le_one_div_sqrt_sq_add_one

end Real

0 comments on commit bb248de

Please sign in to comment.