Skip to content

Commit

Permalink
remove #align from remaining files
Browse files Browse the repository at this point in the history
  • Loading branch information
semorrison committed Nov 5, 2023
1 parent e026db2 commit d4010c7
Show file tree
Hide file tree
Showing 8 changed files with 0 additions and 581 deletions.
92 changes: 0 additions & 92 deletions Mathlib/Data/Set/Card.lean

Large diffs are not rendered by default.

146 changes: 0 additions & 146 deletions Mathlib/FieldTheory/Adjoin.lean

Large diffs are not rendered by default.

10 changes: 0 additions & 10 deletions Mathlib/GroupTheory/Schreier.lean
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,6 @@ theorem closure_mul_image_mul_eq_top
(mul_inv_toFun_mem hR (f (r * s⁻¹) * s))
rw [mul_assoc, ← inv_inv s, ← mul_inv_rev, inv_inv]
exact toFun_mul_inv_mem hR (r * s⁻¹)
#align subgroup.closure_mul_image_mul_eq_top Subgroup.closure_mul_image_mul_eq_top

/-- **Schreier's Lemma**: If `R : Set G` is a `rightTransversal of` `H : Subgroup G`
with `1 ∈ R`, and if `G` is generated by `S : Set G`, then `H` is generated by the `Set`
Expand All @@ -77,7 +76,6 @@ theorem closure_mul_image_eq (hR : R ∈ rightTransversals (H : Set G)) (hR1 : (
exact H.one_mem
· rw [Subtype.coe_mk, inv_one, mul_one]
exact (H.mul_mem_cancel_left (hU hg)).mp hh
#align subgroup.closure_mul_image_eq Subgroup.closure_mul_image_eq

/-- **Schreier's Lemma**: If `R : Set G` is a `rightTransversal` of `H : Subgroup G`
with `1 ∈ R`, and if `G` is generated by `S : Set G`, then `H` is generated by the `Set`
Expand All @@ -87,7 +85,6 @@ theorem closure_mul_image_eq_top (hR : R ∈ rightTransversals (H : Set G)) (hR1
⟨g * (toFun hR g : G)⁻¹, mul_inv_toFun_mem hR g⟩ : Set H) = ⊤ := by
rw [eq_top_iff, ← map_subtype_le_map_subtype, MonoidHom.map_closure, Set.image_image]
exact (map_subtype_le ⊤).trans (ge_of_eq (closure_mul_image_eq hR hR1 hS))
#align subgroup.closure_mul_image_eq_top Subgroup.closure_mul_image_eq_top

/-- **Schreier's Lemma**: If `R : Finset G` is a `rightTransversal` of `H : Subgroup G`
with `1 ∈ R`, and if `G` is generated by `S : Finset G`, then `H` is generated by the `Finset`
Expand All @@ -98,7 +95,6 @@ theorem closure_mul_image_eq_top' [DecidableEq G] {R S : Finset G}
closure (((R * S).image fun g => ⟨_, mul_inv_toFun_mem hR g⟩ : Finset H) : Set H) = ⊤ := by
rw [Finset.coe_image, Finset.coe_mul]
exact closure_mul_image_eq_top hR hR1 hS
#align subgroup.closure_mul_image_eq_top' Subgroup.closure_mul_image_eq_top'

variable (H)

Expand All @@ -122,15 +118,13 @@ theorem exists_finset_card_le_mul [FiniteIndex H] {S : Finset G} (hS : closure (
_ = _ := (Fintype.card_congr (toEquiv hR)).symm
_ = Fintype.card (G ⧸ H) := (QuotientGroup.card_quotient_rightRel H)
_ = H.index := H.index_eq_card.symm
#align subgroup.exists_finset_card_le_mul Subgroup.exists_finset_card_le_mul

/-- **Schreier's Lemma**: A finite index subgroup of a finitely generated
group is finitely generated. -/
instance fg_of_index_ne_zero [hG : Group.FG G] [FiniteIndex H] : Group.FG H := by
obtain ⟨S, hS⟩ := hG.1
obtain ⟨T, -, hT⟩ := exists_finset_card_le_mul H hS
exact ⟨⟨T, hT⟩⟩
#align subgroup.fg_of_index_ne_zero Subgroup.fg_of_index_ne_zero

theorem rank_le_index_mul_rank [hG : Group.FG G] [FiniteIndex H] :
Group.rank H ≤ H.index * Group.rank G := by
Expand All @@ -141,7 +135,6 @@ theorem rank_le_index_mul_rank [hG : Group.FG G] [FiniteIndex H] :
Group.rank H ≤ T.card := Group.rank_le H hT
_ ≤ H.index * S.card := hT₀
_ = H.index * Group.rank G := congr_arg ((· * ·) H.index) hS₀
#align subgroup.rank_le_index_mul_rank Subgroup.rank_le_index_mul_rank

variable (G)

Expand Down Expand Up @@ -176,12 +169,10 @@ theorem card_commutator_dvd_index_center_pow [Finite (commutatorSet G)] :
have := Abelianization.commutator_subset_ker (MonoidHom.transferCenterPow G) g.1.2
-- `transfer g` is defeq to `g ^ [G : Z(G)]`, so we are done
simpa only [MonoidHom.mem_ker, Subtype.ext_iff] using this
#align subgroup.card_commutator_dvd_index_center_pow Subgroup.card_commutator_dvd_index_center_pow

/-- A bound for the size of the commutator subgroup in terms of the number of commutators. -/
def cardCommutatorBound (n : ℕ) :=
(n ^ (2 * n)) ^ (n ^ (2 * n + 1) + 1)
#align subgroup.card_commutator_bound Subgroup.cardCommutatorBound

/-- A theorem of Schur: The size of the commutator subgroup is bounded in terms of the number of
commutators. -/
Expand All @@ -198,7 +189,6 @@ theorem card_commutator_le_of_finite_commutatorSet [Finite (commutatorSet G)] :
rw [← pow_succ'] at h2
refine' (Nat.le_of_dvd _ h2).trans (Nat.pow_le_pow_of_le_left h1 _)
exact pow_pos (Nat.pos_of_ne_zero FiniteIndex.finiteIndex) _
#align subgroup.card_commutator_le_of_finite_commutator_set Subgroup.card_commutator_le_of_finite_commutatorSet

/-- A theorem of Schur: A group with finitely many commutators has finite commutator subgroup. -/
instance [Finite (commutatorSet G)] : Finite (_root_.commutator G) := by
Expand Down
46 changes: 0 additions & 46 deletions Mathlib/NumberTheory/Cyclotomic/Basic.lean

Large diffs are not rendered by default.

115 changes: 0 additions & 115 deletions Mathlib/RingTheory/IntegralClosure.lean

Large diffs are not rendered by default.

122 changes: 0 additions & 122 deletions Mathlib/Topology/Connected/Basic.lean

Large diffs are not rendered by default.

12 changes: 0 additions & 12 deletions Mathlib/Topology/Connected/LocallyConnected.lean
Original file line number Diff line number Diff line change
Expand Up @@ -30,13 +30,11 @@ equivalence later in `locallyConnectedSpace_iff_connected_basis`. -/
class LocallyConnectedSpace (α : Type*) [TopologicalSpace α] : Prop where
/-- Open connected neighborhoods form a basis of the neighborhoods filter. -/
open_connected_basis : ∀ x, (𝓝 x).HasBasis (fun s : Set α => IsOpen s ∧ x ∈ s ∧ IsConnected s) id
#align locally_connected_space LocallyConnectedSpace

theorem locallyConnectedSpace_iff_open_connected_basis :
LocallyConnectedSpace α ↔
∀ x, (𝓝 x).HasBasis (fun s : Set α => IsOpen s ∧ x ∈ s ∧ IsConnected s) id :=
⟨@LocallyConnectedSpace.open_connected_basis _ _, LocallyConnectedSpace.mk⟩
#align locally_connected_space_iff_open_connected_basis locallyConnectedSpace_iff_open_connected_basis

theorem locallyConnectedSpace_iff_open_connected_subsets :
LocallyConnectedSpace α ↔
Expand All @@ -50,41 +48,35 @@ theorem locallyConnectedSpace_iff_open_connected_subsets :
· exact fun h => ⟨fun U => ⟨fun hU =>
let ⟨V, hVU, hV⟩ := h U hU
⟨V, hV, hVU⟩, fun ⟨V, ⟨hV, hxV, _⟩, hVU⟩ => mem_nhds_iff.mpr ⟨V, hVU, hV, hxV⟩⟩⟩
#align locally_connected_space_iff_open_connected_subsets locallyConnectedSpace_iff_open_connected_subsets

/-- A space with discrete topology is a locally connected space. -/
instance (priority := 100) DiscreteTopology.toLocallyConnectedSpace (α) [TopologicalSpace α]
[DiscreteTopology α] : LocallyConnectedSpace α :=
locallyConnectedSpace_iff_open_connected_subsets.2 fun x _U hU =>
⟨{x}, singleton_subset_iff.2 <| mem_of_mem_nhds hU, isOpen_discrete _, rfl,
isConnected_singleton⟩
#align discrete_topology.to_locally_connected_space DiscreteTopology.toLocallyConnectedSpace

theorem connectedComponentIn_mem_nhds [LocallyConnectedSpace α] {F : Set α} {x : α} (h : F ∈ 𝓝 x) :
connectedComponentIn F x ∈ 𝓝 x := by
rw [(LocallyConnectedSpace.open_connected_basis x).mem_iff] at h
rcases h with ⟨s, ⟨h1s, hxs, h2s⟩, hsF⟩
exact mem_nhds_iff.mpr ⟨s, h2s.isPreconnected.subset_connectedComponentIn hxs hsF, h1s, hxs⟩
#align connected_component_in_mem_nhds connectedComponentIn_mem_nhds

protected theorem IsOpen.connectedComponentIn [LocallyConnectedSpace α] {F : Set α} {x : α}
(hF : IsOpen F) : IsOpen (connectedComponentIn F x) := by
rw [isOpen_iff_mem_nhds]
intro y hy
rw [connectedComponentIn_eq hy]
exact connectedComponentIn_mem_nhds (hF.mem_nhds <| connectedComponentIn_subset F x hy)
#align is_open.connected_component_in IsOpen.connectedComponentIn

theorem isOpen_connectedComponent [LocallyConnectedSpace α] {x : α} :
IsOpen (connectedComponent x) := by
rw [← connectedComponentIn_univ]
exact isOpen_univ.connectedComponentIn
#align is_open_connected_component isOpen_connectedComponent

theorem isClopen_connectedComponent [LocallyConnectedSpace α] {x : α} :
IsClopen (connectedComponent x) :=
⟨isOpen_connectedComponent, isClosed_connectedComponent⟩
#align is_clopen_connected_component isClopen_connectedComponent

theorem locallyConnectedSpace_iff_connectedComponentIn_open :
LocallyConnectedSpace α ↔
Expand All @@ -99,7 +91,6 @@ theorem locallyConnectedSpace_iff_connectedComponentIn_open :
(connectedComponentIn_subset _ _).trans interior_subset, h _ isOpen_interior x _,
mem_connectedComponentIn _, isConnected_connectedComponentIn_iff.mpr _⟩ <;>
exact mem_interior_iff_mem_nhds.mpr hU
#align locally_connected_space_iff_connected_component_in_open locallyConnectedSpace_iff_connectedComponentIn_open

theorem locallyConnectedSpace_iff_connected_subsets :
LocallyConnectedSpace α ↔ ∀ (x : α), ∀ U ∈ 𝓝 x, ∃ V ∈ 𝓝 x, IsPreconnected V ∧ V ⊆ U := by
Expand All @@ -113,14 +104,12 @@ theorem locallyConnectedSpace_iff_connected_subsets :
rw [connectedComponentIn_eq hy]
rcases h y U (hU.mem_nhds <| (connectedComponentIn_subset _ _) hy) with ⟨V, hVy, hV, hVU⟩
exact Filter.mem_of_superset hVy (hV.subset_connectedComponentIn (mem_of_mem_nhds hVy) hVU)
#align locally_connected_space_iff_connected_subsets locallyConnectedSpace_iff_connected_subsets

theorem locallyConnectedSpace_iff_connected_basis :
LocallyConnectedSpace α ↔
∀ x, (𝓝 x).HasBasis (fun s : Set α => s ∈ 𝓝 x ∧ IsPreconnected s) id := by
rw [locallyConnectedSpace_iff_connected_subsets]
exact forall_congr' <| fun x => Filter.hasBasis_self.symm
#align locally_connected_space_iff_connected_basis locallyConnectedSpace_iff_connected_basis

theorem locallyConnectedSpace_of_connected_bases {ι : Type*} (b : α → ι → Set α) (p : α → ι → Prop)
(hbasis : ∀ x, (𝓝 x).HasBasis (p x) (b x))
Expand All @@ -130,7 +119,6 @@ theorem locallyConnectedSpace_of_connected_bases {ι : Type*} (b : α → ι →
(hbasis x).to_hasBasis
(fun i hi => ⟨b x i, ⟨(hbasis x).mem_of_mem hi, hconnected x i hi⟩, subset_rfl⟩) fun s hs =>
⟨(hbasis x).index s hs.1, ⟨(hbasis x).property_index hs.1, (hbasis x).set_index_subset hs.1⟩⟩
#align locally_connected_space_of_connected_bases locallyConnectedSpace_of_connected_bases

theorem OpenEmbedding.locallyConnectedSpace [LocallyConnectedSpace α] [TopologicalSpace β]
{f : β → α} (h : OpenEmbedding f) : LocallyConnectedSpace β := by
Expand Down

0 comments on commit d4010c7

Please sign in to comment.