Skip to content

Commit

Permalink
feat: absolute convergence from conditional of power series (#9955)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Feb 1, 2024
1 parent 4e65ea9 commit edba675
Showing 1 changed file with 32 additions and 0 deletions.
32 changes: 32 additions & 0 deletions Mathlib/Analysis/SpecificLimits/Normed.lean
Expand Up @@ -465,6 +465,13 @@ theorem NormedAddCommGroup.cauchy_series_of_le_geometric'' {C : ℝ} {u : ℕ
exact h _ H
#align normed_add_comm_group.cauchy_series_of_le_geometric'' NormedAddCommGroup.cauchy_series_of_le_geometric''

/-- The term norms of any convergent series are bounded by a constant. -/
lemma exists_norm_le_of_cauchySeq (h : CauchySeq fun n ↦ ∑ k in range n, f k) :
∃ C, ∀ n, ‖f n‖ ≤ C := by
obtain ⟨b, ⟨_, key, _⟩⟩ := cauchySeq_iff_le_tendsto_0.mp h
refine ⟨b 0, fun n ↦ ?_⟩
simpa only [dist_partial_sum'] using key n (n + 1) 0 (_root_.zero_le _) (_root_.zero_le _)

end SummableLeGeometric

section NormedRingGeometric
Expand Down Expand Up @@ -586,6 +593,31 @@ theorem not_summable_of_ratio_test_tendsto_gt_one {α : Type*} [SeminormedAddCom
rwa [← le_div_iff (lt_of_le_of_ne (norm_nonneg _) h₁.symm)]
#align not_summable_of_ratio_test_tendsto_gt_one not_summable_of_ratio_test_tendsto_gt_one

section NormedDivisionRing

variable [NormedDivisionRing α] [CompleteSpace α] {f : ℕ → α}

/-- If a power series converges at `w`, it converges absolutely at all `z` of smaller norm. -/
theorem summable_powerSeries_of_norm_lt {w z : α}
(h : CauchySeq fun n ↦ ∑ i in range n, f i * w ^ i) (hz : ‖z‖ < ‖w‖) :
Summable fun n ↦ f n * z ^ n := by
have hw : 0 < ‖w‖ := (norm_nonneg z).trans_lt hz
obtain ⟨C, hC⟩ := exists_norm_le_of_cauchySeq h
rw [summable_iff_cauchySeq_finset]
refine cauchySeq_finset_of_geometric_bound (r := ‖z‖ / ‖w‖) (C := C) ((div_lt_one hw).mpr hz)
(fun n ↦ ?_)
rw [norm_mul, norm_pow, div_pow, ← mul_comm_div]
conv at hC => enter [n]; rw [norm_mul, norm_pow, ← _root_.le_div_iff (by positivity)]
exact mul_le_mul_of_nonneg_right (hC n) (pow_nonneg (norm_nonneg z) n)

/-- If a power series converges at 1, it converges absolutely at all `z` of smaller norm. -/
theorem summable_powerSeries_of_norm_lt_one {z : α}
(h : CauchySeq fun n ↦ ∑ i in range n, f i) (hz : ‖z‖ < 1) :
Summable fun n ↦ f n * z ^ n :=
summable_powerSeries_of_norm_lt (w := 1) (by simp [h]) (by simp [hz])

end NormedDivisionRing

section

/-! ### Dirichlet and alternating series tests -/
Expand Down

0 comments on commit edba675

Please sign in to comment.