Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: characterize ClusterPt, MapClusterPt, IsClosed using ultrafilters #10143

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions Mathlib/Topology/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1179,18 +1179,30 @@ theorem Ultrafilter.clusterPt_iff {f : Ultrafilter X} : ClusterPt x f ↔ ↑f
⟨f.le_of_inf_neBot', fun h => ClusterPt.of_le_nhds h⟩
#align ultrafilter.cluster_pt_iff Ultrafilter.clusterPt_iff

theorem clusterPt_iff_ultrafilter {f : Filter X} : ClusterPt x f ↔
∃ u : Ultrafilter X, u ≤ f ∧ u ≤ 𝓝 x := by
simp_rw [ClusterPt, ← le_inf_iff, exists_ultrafilter_iff, inf_comm]

/-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point
of `map u F`. -/
def MapClusterPt {ι : Type*} (x : X) (F : Filter ι) (u : ι → X) : Prop :=
ClusterPt x (map u F)
#align map_cluster_pt MapClusterPt

theorem mapClusterPt_def {ι : Type*} (x : X) (F : Filter ι) (u : ι → X) :
MapClusterPt x F u ↔ ClusterPt x (map u F) := Iff.rfl

theorem mapClusterPt_iff {ι : Type*} (x : X) (F : Filter ι) (u : ι → X) :
MapClusterPt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := by
simp_rw [MapClusterPt, ClusterPt, inf_neBot_iff_frequently_left, frequently_map]
rfl
#align map_cluster_pt_iff mapClusterPt_iff

theorem mapClusterPt_iff_ultrafilter {ι : Type*} (x : X) (F : Filter ι) (u : ι → X) :
MapClusterPt x F u ↔ ∃ U : Ultrafilter ι, U ≤ F ∧ Tendsto u U (𝓝 x) := by
simp_rw [MapClusterPt, ClusterPt, ← Filter.push_pull', map_neBot_iff, tendsto_iff_comap,
← le_inf_iff, exists_ultrafilter_iff, inf_comm]

theorem mapClusterPt_of_comp {F : Filter α} {φ : β → α} {p : Filter β}
{u : α → X} [NeBot p] (h : Tendsto φ p F) (H : Tendsto (u ∘ φ) p (𝓝 x)) :
MapClusterPt x F u := by
Expand Down Expand Up @@ -1432,6 +1444,10 @@ theorem isClosed_iff_clusterPt : IsClosed s ↔ ∀ a, ClusterPt a (𝓟 s) →
_ ↔ ∀ a, ClusterPt a (𝓟 s) → a ∈ s := by simp only [subset_def, mem_closure_iff_clusterPt]
#align is_closed_iff_cluster_pt isClosed_iff_clusterPt

theorem isClosed_iff_ultrafilter : IsClosed s ↔
∀ x, ∀ u : Ultrafilter X, ↑u ≤ 𝓝 x → s ∈ u → x ∈ s := by
simp [isClosed_iff_clusterPt, ClusterPt, ← exists_ultrafilter_iff]

theorem isClosed_iff_nhds :
IsClosed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).Nonempty) → x ∈ s := by
simp_rw [isClosed_iff_clusterPt, ClusterPt, inf_principal_neBot_iff]
Expand Down
Loading