Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore: missing simps lemmas for Multiplicative defs #7016

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
67 changes: 53 additions & 14 deletions Mathlib/Algebra/Hom/Equiv/TypeTags.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,56 +16,93 @@ import Mathlib.Algebra.Group.TypeTags
variable {G H : Type*}

/-- Reinterpret `G ≃+ H` as `Multiplicative G ≃* Multiplicative H`. -/
@[simps]
def AddEquiv.toMultiplicative [AddZeroClass G] [AddZeroClass H] :
G ≃+ H ≃ (Multiplicative G ≃* Multiplicative H) where
toFun f :=
⟨⟨AddMonoidHom.toMultiplicative f.toAddMonoidHom,
AddMonoidHom.toMultiplicative f.symm.toAddMonoidHom, f.1.3, f.1.4⟩, f.2⟩
invFun f := ⟨⟨f.toMonoidHom, f.symm.toMonoidHom, f.1.3, f.1.4⟩, f.2⟩
{ toFun := AddMonoidHom.toMultiplicative f.toAddMonoidHom
invFun := AddMonoidHom.toMultiplicative f.symm.toAddMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_mul' := f.map_add }
invFun f :=
{ toFun := AddMonoidHom.toMultiplicative.symm f.toMonoidHom
invFun := AddMonoidHom.toMultiplicative.symm f.symm.toMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_add' := f.map_mul }
left_inv x := by ext; rfl
right_inv x := by ext; rfl
#align add_equiv.to_multiplicative AddEquiv.toMultiplicative

/-- Reinterpret `G ≃* H` as `Additive G ≃+ Additive H`. -/
@[simps]
def MulEquiv.toAdditive [MulOneClass G] [MulOneClass H] :
G ≃* H ≃ (Additive G ≃+ Additive H) where
toFun f := ⟨⟨MonoidHom.toAdditive f.toMonoidHom,
MonoidHom.toAdditive f.symm.toMonoidHom, f.1.3, f.1.4⟩, f.2⟩
invFun f := ⟨⟨f.toAddMonoidHom, f.symm.toAddMonoidHom, f.1.3, f.1.4⟩, f.2⟩
toFun f :=
{ toFun := MonoidHom.toAdditive f.toMonoidHom
invFun := MonoidHom.toAdditive f.symm.toMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_add' := f.map_mul }
invFun f :=
{ toFun := MonoidHom.toAdditive.symm f.toAddMonoidHom
invFun := MonoidHom.toAdditive.symm f.symm.toAddMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_mul' := f.map_add }
left_inv x := by ext; rfl
right_inv x := by ext; rfl
#align mul_equiv.to_additive MulEquiv.toAdditive

/-- Reinterpret `Additive G ≃+ H` as `G ≃* Multiplicative H`. -/
@[simps]
def AddEquiv.toMultiplicative' [MulOneClass G] [AddZeroClass H] :
Additive G ≃+ H ≃ (G ≃* Multiplicative H) where
toFun f :=
⟨⟨AddMonoidHom.toMultiplicative' f.toAddMonoidHom,
AddMonoidHom.toMultiplicative'' f.symm.toAddMonoidHom, f.1.3, f.1.4⟩, f.2⟩
invFun f := ⟨⟨f.toMonoidHom, f.symm.toMonoidHom, f.1.3, f.1.4⟩, f.2⟩
{ toFun := AddMonoidHom.toMultiplicative' f.toAddMonoidHom
invFun := AddMonoidHom.toMultiplicative'' f.symm.toAddMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_mul' := f.map_add }
invFun f :=
{ toFun := AddMonoidHom.toMultiplicative'.symm f.toMonoidHom
invFun := AddMonoidHom.toMultiplicative''.symm f.symm.toMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_add' := f.map_mul }
left_inv x := by ext; rfl
right_inv x := by ext; rfl
#align add_equiv.to_multiplicative' AddEquiv.toMultiplicative'

/-- Reinterpret `G ≃* Multiplicative H` as `Additive G ≃+ H` as. -/
def MulEquiv.toAdditive' [MulOneClass G] [AddZeroClass H] :
abbrev MulEquiv.toAdditive' [MulOneClass G] [AddZeroClass H] :
G ≃* Multiplicative H ≃ (Additive G ≃+ H) :=
AddEquiv.toMultiplicative'.symm
#align mul_equiv.to_additive' MulEquiv.toAdditive'

/-- Reinterpret `G ≃+ Additive H` as `Multiplicative G ≃* H`. -/
@[simps]
def AddEquiv.toMultiplicative'' [AddZeroClass G] [MulOneClass H] :
G ≃+ Additive H ≃ (Multiplicative G ≃* H) where
toFun f :=
⟨⟨AddMonoidHom.toMultiplicative'' f.toAddMonoidHom,
AddMonoidHom.toMultiplicative' f.symm.toAddMonoidHom, f.1.3, f.1.4⟩, f.2⟩
invFun f := ⟨⟨f.toMonoidHom, f.symm.toMonoidHom, f.1.3, f.1.4⟩, f.2⟩
{ toFun := AddMonoidHom.toMultiplicative'' f.toAddMonoidHom
invFun := AddMonoidHom.toMultiplicative' f.symm.toAddMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_mul' := f.map_add }
invFun f :=
{ toFun := AddMonoidHom.toMultiplicative''.symm f.toMonoidHom
invFun := AddMonoidHom.toMultiplicative'.symm f.symm.toMonoidHom
left_inv := f.left_inv
right_inv := f.right_inv
map_add' := f.map_mul }
left_inv x := by ext; rfl
right_inv x := by ext; rfl
#align add_equiv.to_multiplicative'' AddEquiv.toMultiplicative''

/-- Reinterpret `Multiplicative G ≃* H` as `G ≃+ Additive H` as. -/
def MulEquiv.toAdditive'' [AddZeroClass G] [MulOneClass H] :
abbrev MulEquiv.toAdditive'' [AddZeroClass G] [MulOneClass H] :
Multiplicative G ≃* H ≃ (G ≃+ Additive H) :=
AddEquiv.toMultiplicative''.symm
#align mul_equiv.to_additive'' MulEquiv.toAdditive''
Expand All @@ -75,11 +112,13 @@ section
variable (G) (H)

/-- `Additive (Multiplicative G)` is just `G`. -/
@[simps!]
def AddEquiv.additiveMultiplicative [AddZeroClass G] : Additive (Multiplicative G) ≃+ G :=
MulEquiv.toAdditive' (MulEquiv.refl (Multiplicative G))
#align add_equiv.additive_multiplicative AddEquiv.additiveMultiplicative

/-- `Multiplicative (Additive H)` is just `H`. -/
@[simps!]
def MulEquiv.multiplicativeAdditive [MulOneClass H] : Multiplicative (Additive H) ≃* H :=
AddEquiv.toMultiplicative'' (AddEquiv.refl (Additive H))
#align mul_equiv.multiplicative_additive MulEquiv.multiplicativeAdditive
Expand Down