Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - doc(Analysis.Complex.CauchyIntegral): add missing word #9211

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions Mathlib/Analysis/Complex/CauchyIntegral.lean
Original file line number Diff line number Diff line change
Expand Up @@ -293,10 +293,10 @@ theorem integral_boundary_rect_eq_zero_of_differentiableOn (f : ℂ → E) (z w
inter_subset_inter (preimage_mono Ioo_subset_Icc_self) (preimage_mono Ioo_subset_Icc_self)
#align complex.integral_boundary_rect_eq_zero_of_differentiable_on Complex.integral_boundary_rect_eq_zero_of_differentiableOn

/-- If `f : ℂ → E` is continuous the closed annulus `r ≤ ‖z - c‖ ≤ R`, `0 < r ≤ R`, and is complex
differentiable at all but countably many points of its interior, then the integrals of
`f z / (z - c)` (formally, `(z - c)⁻¹ • f z`) over the circles `‖z - c‖ = r` and `‖z - c‖ = R` are
equal to each other. -/
/-- If `f : ℂ → E` is continuous on the closed annulus `r ≤ ‖z - c‖ ≤ R`, `0 < r ≤ R`,
and is complex differentiable at all but countably many points of its interior,
then the integrals of `f z / (z - c)` (formally, `(z - c)⁻¹ • f z`)
over the circles `‖z - c‖ = r` and `‖z - c‖ = R` are equal to each other. -/
theorem circleIntegral_sub_center_inv_smul_eq_of_differentiable_on_annulus_off_countable {c : ℂ}
{r R : ℝ} (h0 : 0 < r) (hle : r ≤ R) {f : ℂ → E} {s : Set ℂ} (hs : s.Countable)
(hc : ContinuousOn f (closedBall c R \ ball c r))
Expand Down