Skip to content

Commit

Permalink
adds gradient_centralization2, fixes addcmul_ warning
Browse files Browse the repository at this point in the history
  • Loading branch information
lessw2020 committed Sep 4, 2020
1 parent 81d386b commit 02d0540
Showing 1 changed file with 208 additions and 0 deletions.
208 changes: 208 additions & 0 deletions ranger/ranger2020.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
# Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.

# https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
# and/or
# https://github.com/lessw2020/Best-Deep-Learning-Optimizers

# Ranger has been used to capture 12 records on the FastAI leaderboard.

# This version = 2020.9.4


# Credits:
# Gradient Centralization --> https://arxiv.org/abs/2004.01461v2 (a new optimization technique for DNNs), github: https://github.com/Yonghongwei/Gradient-Centralization
# RAdam --> https://github.com/LiyuanLucasLiu/RAdam
# Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
# Lookahead paper --> MZhang,G Hinton https://arxiv.org/abs/1907.08610

# summary of changes:
# 9/4/20 - updated addcmul_ signature to avoid warning. Integrates latest changes from GC developer (he did the work for this), and verified on performance on private dataset.
# 4/11/20 - add gradient centralization option. Set new testing benchmark for accuracy with it, toggle with use_gc flag at init.
# full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights),
# supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
# changes 8/31/19 - fix references to *self*.N_sma_threshold;
# changed eps to 1e-5 as better default than 1e-8.

import math
import torch
from torch.optim.optimizer import Optimizer, required


def centralized_gradient(x, use_gc=True, gc_conv_only=False):
'''credit - https://github.com/Yonghongwei/Gradient-Centralization '''
if use_gc:
if gc_conv_only:
if len(list(x.size())) > 3:
x.add_(-x.mean(dim=tuple(range(1, len(list(x.size())))), keepdim=True))
else:
if len(list(x.size())) > 1:
x.add_(-x.mean(dim=tuple(range(1, len(list(x.size())))), keepdim=True))
return x


class Ranger(Optimizer):

def __init__(self, params, lr=1e-3, # lr
alpha=0.5, k=6, N_sma_threshhold=5, # Ranger options
betas=(.95, 0.999), eps=1e-5, weight_decay=0, # Adam options
# Gradient centralization on or off, applied to conv layers only or conv + fc layers
use_gc=True, gc_conv_only=False, gc_loc=True
):

# parameter checks
if not 0.0 <= alpha <= 1.0:
raise ValueError(f'Invalid slow update rate: {alpha}')
if not 1 <= k:
raise ValueError(f'Invalid lookahead steps: {k}')
if not lr > 0:
raise ValueError(f'Invalid Learning Rate: {lr}')
if not eps > 0:
raise ValueError(f'Invalid eps: {eps}')

# parameter comments:
# beta1 (momentum) of .95 seems to work better than .90...
# N_sma_threshold of 5 seems better in testing than 4.
# In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.

# prep defaults and init torch.optim base
defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas,
N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)
super().__init__(params, defaults)

# adjustable threshold
self.N_sma_threshhold = N_sma_threshhold

# look ahead params

self.alpha = alpha
self.k = k

# radam buffer for state
self.radam_buffer = [[None, None, None] for ind in range(10)]

# gc on or off
self.gc_loc = gc_loc
self.use_gc = use_gc
self.gc_conv_only = gc_conv_only
# level of gradient centralization
#self.gc_gradient_threshold = 3 if gc_conv_only else 1

print(
f"Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}")
if (self.use_gc and self.gc_conv_only == False):
print(f"GC applied to both conv and fc layers")
elif (self.use_gc and self.gc_conv_only == True):
print(f"GC applied to conv layers only")

def __setstate__(self, state):
print("set state called")
super(Ranger, self).__setstate__(state)

def step(self, closure=None):
loss = None
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
# Uncomment if you need to use the actual closure...

# if closure is not None:
#loss = closure()

# Evaluate averages and grad, update param tensors
for group in self.param_groups:

for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()

if grad.is_sparse:
raise RuntimeError(
'Ranger optimizer does not support sparse gradients')

p_data_fp32 = p.data.float()

state = self.state[p] # get state dict for this param

if len(state) == 0: # if first time to run...init dictionary with our desired entries
# if self.first_run_check==0:
# self.first_run_check=1
#print("Initializing slow buffer...should not see this at load from saved model!")
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)

# look ahead weight storage now in state dict
state['slow_buffer'] = torch.empty_like(p.data)
state['slow_buffer'].copy_(p.data)

else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
p_data_fp32)

# begin computations
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']

# GC operation for Conv layers and FC layers
# if grad.dim() > self.gc_gradient_threshold:
# grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True))
if self.gc_loc:
grad = centralized_gradient(grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only)

state['step'] += 1

# compute variance mov avg
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

# compute mean moving avg
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

buffered = self.radam_buffer[int(state['step'] % 10)]

if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * \
state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
if N_sma > self.N_sma_threshhold:
step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (
N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
else:
step_size = 1.0 / (1 - beta1 ** state['step'])
buffered[2] = step_size

# if group['weight_decay'] != 0:
# p_data_fp32.add_(-group['weight_decay']
# * group['lr'], p_data_fp32)

# apply lr
if N_sma > self.N_sma_threshhold:
denom = exp_avg_sq.sqrt().add_(group['eps'])
G_grad = exp_avg / denom
else:
G_grad = exp_avg

if group['weight_decay'] != 0:
G_grad.add_(p_data_fp32, alpha=group['weight_decay'])
# GC operation
if self.gc_loc == False:
G_grad = centralized_gradient(G_grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only)

p_data_fp32.add_(G_grad, alpha=-step_size * group['lr'])
p.data.copy_(p_data_fp32)

# integrated look ahead...
# we do it at the param level instead of group level
if state['step'] % group['k'] == 0:
# get access to slow param tensor
slow_p = state['slow_buffer']
# (fast weights - slow weights) * alpha
slow_p.add_(p.data - slow_p, alpha=self.alpha)
# copy interpolated weights to RAdam param tensor
p.data.copy_(slow_p)

return loss

0 comments on commit 02d0540

Please sign in to comment.