Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][linalg] Implement Conv2D using Winograd Conv2D algorithm #96176

Closed
wants to merge 1 commit into from

Conversation

Hsiangkai
Copy link
Contributor

Define high level winograd operators and convert conv_2d_nhwc_fhwc into winograd operators. According to Winograd Conv2D algorithm, we need three transform operators for input, filter, and output transformation.

The formula of Winograd Conv2D algorithm is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A

The implementation is based on the paper, Fast Algorithm for Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)

@llvmbot
Copy link
Collaborator

llvmbot commented Jun 20, 2024

@llvm/pr-subscribers-mlir-linalg

@llvm/pr-subscribers-mlir

Author: Hsiangkai Wang (Hsiangkai)

Changes

Define high level winograd operators and convert conv_2d_nhwc_fhwc into winograd operators. According to Winograd Conv2D algorithm, we need three transform operators for input, filter, and output transformation.

The formula of Winograd Conv2D algorithm is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A

The implementation is based on the paper, Fast Algorithm for Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)


Patch is 45.03 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/96176.diff

7 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td (+114)
  • (modified) mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h (+4)
  • (modified) mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp (+78)
  • (modified) mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt (+1)
  • (added) mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp (+321)
  • (added) mlir/test/Dialect/Linalg/winograd-conv2d.mlir (+248)
  • (modified) mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp (+13)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
index 64c538367267d..de1097b6ac27b 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
@@ -154,4 +154,118 @@ def Linalg_SoftmaxOp : Linalg_Op<"softmax",
   let hasVerifier = 1;
 }
 
+def Linalg_WinogradFilterTransformOp : Linalg_Op<"winograd_filter_transform"> {
+  let summary = "Winograd filter transform operator";
+  let description = [{
+    Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+    matrix multiply. Before the matrix multiply, it will convert filter and
+    input into a format suitable for batched matrix multiply. After the matrix
+    multiply, it will convert output to the final result tensor.
+
+    The algorithm F(m x m, r x r) is
+
+    Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+    The size of output Y is m x m. The size of filter g is r x r. The size of
+    input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+    transformation matrices.
+
+    This operator is defined to represent the high level concept of filter
+    transformation (G x g x G^T) in the Winograd Conv2D algorithm.
+  }];
+
+  let arguments = (ins AnyRankedTensor:$filter,
+                       AnyRankedTensor:$output,
+                       I64Attr:$m,
+                       I64Attr:$r
+  );
+
+  let results = (outs AnyRankedTensor:$result);
+  let assemblyFormat = [{
+    attr-dict
+    `m` `(` $m `)`
+    `r` `(` $r `)`
+    `ins` `(` $filter `:` type($filter) `)`
+    `outs` `(` $output `:` type($output) `)`
+    `->` type($result)
+  }];
+  let hasVerifier = 1;
+}
+
+def Linalg_WinogradInputTransformOp : Linalg_Op<"winograd_input_transform"> {
+  let summary = "Winograd input transform operator";
+  let description = [{
+    Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+    matrix multiply. Before the matrix multiply, it will convert filter and
+    input into a format suitable for batched matrix multiply. After the matrix
+    multiply, it will convert output to the final result tensor.
+
+    The algorithm F(m x m, r x r) is
+
+    Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+    The size of output Y is m x m. The size of filter g is r x r. The size of
+    input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+    transformation matrices.
+
+    This operator is defined to represent the high level concept of input
+    transformation (B^T x d x B) in the Winograd Conv2D algorithm.
+  }];
+
+  let arguments = (ins AnyRankedTensor:$input,
+                       AnyRankedTensor:$output,
+                       I64Attr:$m,
+                       I64Attr:$r
+  );
+
+  let results = (outs AnyRankedTensor:$result);
+  let assemblyFormat = [{
+    attr-dict
+    `m` `(` $m `)`
+    `r` `(` $r `)`
+    `ins` `(` $input `:` type($input) `)`
+    `outs` `(` $output `:` type($output) `)`
+    `->` type($result)
+  }];
+  let hasVerifier = 1;
+}
+
+def Linalg_WinogradOutputTransformOp : Linalg_Op<"winograd_output_transform"> {
+  let summary = "Winograd output transform operator";
+  let description = [{
+    Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+    matrix multiply. Before the matrix multiply, it will convert filter and
+    input into a format suitable for batched matrix multiply. After the matrix
+    multiply, it will convert output to the final result tensor.
+
+    The algorithm F(m x m, r x r) is
+
+    Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+    The size of output Y is m x m. The size of filter g is r x r. The size of
+    input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+    transformation matrices.
+
+    This operator is defined to represent the high level concept of output
+    transformation (A^T x y x A) in the Winograd Conv2D algorithm.
+  }];
+
+  let arguments = (ins AnyRankedTensor:$value,
+                       AnyRankedTensor:$output,
+                       I64Attr:$m,
+                       I64Attr:$r
+  );
+
+  let results = (outs AnyRankedTensor:$result);
+  let assemblyFormat = [{
+    attr-dict
+    `m` `(` $m `)`
+    `r` `(` $r `)`
+    `ins` `(` $value `:` type($value) `)`
+    `outs` `(` $output `:` type($output) `)`
+    `->` type($result)
+  }];
+  let hasVerifier = 1;
+}
+
 #endif // LINALG_OPS
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 05e97befdec1f..835aeaf2ffed3 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -1692,6 +1692,10 @@ void populateTransposeMatmulPatterns(RewritePatternSet &patterns,
 void populateBlockPackMatmulPatterns(RewritePatternSet &patterns,
                                      const ControlBlockPackMatmulFn &controlFn);
 
+/// Patterns to apply Winograd Conv2D algorithm F(m x m, r x r).
+void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m,
+                                    int64_t r);
+
 } // namespace linalg
 } // namespace mlir
 
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 57d126603ebd7..7bf2a5bca037f 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -2734,6 +2734,84 @@ FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
   return SmallVector<Value>{result};
 }
 
+//===----------------------------------------------------------------------===//
+// WinogradFilterTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradFilterTransformOp::verify() {
+  auto filterType = cast<ShapedType>(getFilter().getType());
+  auto outputType = cast<ShapedType>(getOutput().getType());
+  auto filterElemType = filterType.getElementType();
+  auto outputElemType = outputType.getElementType();
+  if (filterElemType != outputElemType) {
+    return emitOpError() << "expected element type of input " << filterElemType
+                         << " to match element type of output "
+                         << outputElemType;
+  }
+
+  unsigned filterRank = filterType.getRank();
+  if (filterRank != 4)
+    return emitOpError() << "expected rank of input is 4";
+
+  unsigned outputRank = outputType.getRank();
+  if (outputRank != 6)
+    return emitOpError() << "expected rank of output is 6";
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// WinogradInputTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradInputTransformOp::verify() {
+  auto inputType = cast<ShapedType>(getInput().getType());
+  auto outputType = cast<ShapedType>(getOutput().getType());
+  auto inputElemType = inputType.getElementType();
+  auto outputElemType = outputType.getElementType();
+  if (inputElemType != outputElemType) {
+    return emitOpError() << "expected element type of input " << inputElemType
+                         << " to match element type of output "
+                         << outputElemType;
+  }
+
+  unsigned inputRank = inputType.getRank();
+  if (inputRank != 4)
+    return emitOpError() << "expected rank of input is 4";
+
+  unsigned outputRank = outputType.getRank();
+  if (outputRank != 6)
+    return emitOpError() << "expected rank of output is 6";
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// WinogradOutputTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradOutputTransformOp::verify() {
+  auto valueType = cast<ShapedType>(getValue().getType());
+  auto outputType = cast<ShapedType>(getOutput().getType());
+  auto valueElemType = valueType.getElementType();
+  auto outputElemType = outputType.getElementType();
+  if (valueElemType != outputElemType) {
+    return emitOpError() << "expected element type of value " << valueElemType
+                         << " to match element type of output "
+                         << outputElemType;
+  }
+
+  unsigned valueRank = valueType.getRank();
+  if (valueRank != 6)
+    return emitOpError() << "expected rank of input is 6";
+
+  unsigned outputRank = outputType.getRank();
+  if (outputRank != 4)
+    return emitOpError() << "expected rank of output is 4";
+
+  return success();
+}
+
 //===----------------------------------------------------------------------===//
 // LinalgDialect
 //===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
index 7e3dc56e0acdc..a7dcc29b5b9be 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
@@ -38,6 +38,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
   Transforms.cpp
   TransposeConv2D.cpp
   Vectorization.cpp
+  WinogradConv2D.cpp
 
   ADDITIONAL_HEADER_DIRS
   ${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Linalg
diff --git a/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
new file mode 100644
index 0000000000000..86e834d51f2fc
--- /dev/null
+++ b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
@@ -0,0 +1,321 @@
+//===- WinogradConv2D.cpp - Winograd Conv2D implementation ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement Winograd Conv2D algorithm. The implementation is based on the
+// paper: Fast Algorithms for Convolutional Neural Networks
+// (https://arxiv.org/abs/1509.09308)
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/Support/MathExtras.h"
+
+namespace mlir {
+namespace linalg {
+
+namespace {
+
+using TransformMapKeyTy = std::pair<int, int>;
+
+// We use F(m, r) to define the size of minimal filtering algorithms.
+// m is the output dimension and r is the filter dimension. We can get
+// the input dimension, alpha, from the formula, alpha = m + r - 1.
+//
+// For example, when m = 2 and r = 3, we know its input size is 4.
+// The Conv2D will operate on 4x4 input data with 3x3 filter and get
+// 2x2 output result.
+constexpr TransformMapKeyTy F_2_3{2, 3};
+constexpr TransformMapKeyTy F_4_3{4, 3};
+constexpr TransformMapKeyTy F_2_5{2, 5};
+
+Value collapse2DData(RewriterBase &rewriter, Location loc, Value data) {
+  auto type = cast<ShapedType>(data.getType());
+  auto elementType = type.getElementType();
+  auto shape = type.getShape();
+  auto collapseType = RankedTensorType::get(
+      {shape[0] * shape[1] * shape[2] * shape[3], shape[4], shape[5]},
+      elementType);
+  SmallVector<ReassociationIndices> reassociation = {{0, 1, 2, 3}, {4}, {5}};
+  return rewriter.create<tensor::CollapseShapeOp>(loc, collapseType, data,
+                                                  reassociation);
+}
+
+// This function generates linalg.batch_matmul to multiply input with filter.
+// linalg.batch_matmul only supports 3-dimension data sets. We can treat
+// tileH x tileW x H x W data as the 1-dimension data array. That is to convert
+// [tileH, tileW, H, W, N, C] to [tileH x tileW x H x W, N, C]. In this way, we
+// can convert 6-dimension input data to 3-dimension representation that is
+// suitable for linalg.batch_matmul.
+//
+// Batched matmul will do the matrix multiply with the reduction on channel.
+//
+// We get
+//
+// %collapsed_input = tensor.collapse_shape %input
+// %collapsed_filter = tensor.collapse_shape %filter
+// %ret = linalg.batch_matmul %collapsed_input, %collapsed_filter
+// %expanded_ret = tensor.expand_shape %ret
+//
+// After this function, we get return value with data layout
+// (tileH, tileW, H, W, N, F).
+Value matrixMultiply(RewriterBase &rewriter, Location loc,
+                     Value transformedFilter, Value transformedInput) {
+  auto collapseFilter = collapse2DData(rewriter, loc, transformedFilter);
+  auto collapseInput = collapse2DData(rewriter, loc, transformedInput);
+
+  // Batched matrix multiply
+  auto filterType = cast<ShapedType>(transformedFilter.getType());
+  auto filterShape = filterType.getShape();
+  auto inputType = cast<ShapedType>(transformedInput.getType());
+  auto inputElemType = inputType.getElementType();
+  auto inputShape = inputType.getShape();
+
+  auto matmulType = RankedTensorType::get(
+      {inputShape[0] * inputShape[1] * inputShape[2] * inputShape[3],
+       inputShape[4], filterShape[5]},
+      inputElemType);
+  Value init = rewriter.create<tensor::EmptyOp>(loc, matmulType.getShape(),
+                                                inputElemType);
+
+  auto matmulOp = rewriter.create<linalg::BatchMatmulOp>(
+      loc, matmulType, ValueRange({collapseInput, collapseFilter}),
+      ValueRange{init});
+
+  // Expand matmul result
+  SmallVector<ReassociationIndices> reassociation = {{0, 1, 2, 3}, {4}, {5}};
+  auto expandType =
+      RankedTensorType::get({inputShape[0], inputShape[1], inputShape[2],
+                             inputShape[3], inputShape[4], filterShape[5]},
+                            inputElemType);
+  auto expandOutput = rewriter.create<tensor::ExpandShapeOp>(
+      loc, expandType, matmulOp.getResult(0), reassociation);
+  return expandOutput;
+}
+
+Value insertToAlignedTensor(RewriterBase &rewriter, Location loc, Value value,
+                            RankedTensorType alignedType) {
+  Value alignedInput = rewriter.create<tensor::EmptyOp>(
+      loc, alignedType.getShape(), alignedType.getElementType());
+
+  auto zeroIndex = rewriter.getIndexAttr(0);
+  auto oneIndex = rewriter.getIndexAttr(1);
+  SmallVector<OpFoldResult, 4> offsets(4, zeroIndex);
+  SmallVector<OpFoldResult, 4> strides(4, oneIndex);
+
+  auto valueType = cast<ShapedType>(value.getType());
+  auto valueShape = valueType.getShape();
+  SmallVector<OpFoldResult, 4> sizes;
+  sizes.emplace_back(rewriter.getIndexAttr(valueShape[0]));
+  sizes.emplace_back(rewriter.getIndexAttr(valueShape[1]));
+  sizes.emplace_back(rewriter.getIndexAttr(valueShape[2]));
+  sizes.emplace_back(rewriter.getIndexAttr(valueShape[3]));
+
+  return rewriter.create<tensor::InsertSliceOp>(loc, value, alignedInput,
+                                                offsets, sizes, strides);
+}
+
+Value extractFromAlignedTensor(RewriterBase &rewriter, Location loc,
+                               Value value, RankedTensorType extractedType) {
+  auto zeroIndex = rewriter.getIndexAttr(0);
+  auto oneIndex = rewriter.getIndexAttr(1);
+  SmallVector<OpFoldResult, 4> offsets(4, zeroIndex);
+  SmallVector<OpFoldResult, 4> strides(4, oneIndex);
+
+  auto extractedShape = extractedType.getShape();
+  SmallVector<OpFoldResult, 4> sizes;
+  sizes.emplace_back(rewriter.getIndexAttr(extractedShape[0]));
+  sizes.emplace_back(rewriter.getIndexAttr(extractedShape[1]));
+  sizes.emplace_back(rewriter.getIndexAttr(extractedShape[2]));
+  sizes.emplace_back(rewriter.getIndexAttr(extractedShape[3]));
+
+  return rewriter.create<tensor::ExtractSliceOp>(loc, extractedType, value,
+                                                 offsets, sizes, strides);
+}
+
+bool hasAllOneValues(DenseIntElementsAttr attr) {
+  return llvm::all_of(
+      attr, [](const APInt &element) { return element.getSExtValue() == 1; });
+}
+
+FailureOr<Operation *> winogradConv2DHelper(RewriterBase &rewriter,
+                                            linalg::Conv2DNhwcFhwcOp convOp,
+                                            int64_t m, int64_t r) {
+  Value input = convOp.getInputs()[0];
+  Value filter = convOp.getInputs()[1];
+  Value output = convOp.getOutputs()[0];
+  auto inputType = cast<ShapedType>(input.getType());
+  auto filterType = cast<ShapedType>(filter.getType());
+  auto outputType = cast<ShapedType>(output.getType());
+
+  if (!inputType.hasStaticShape())
+    return rewriter.notifyMatchFailure(convOp,
+                                       "expected a static shape for the input");
+
+  if (!filterType.hasStaticShape())
+    return rewriter.notifyMatchFailure(
+        convOp, "expected a static shape for the filter");
+
+  if (!hasAllOneValues(convOp.getDilations()))
+    return rewriter.notifyMatchFailure(convOp,
+                                       "expected all ones for dilations");
+
+  if (!hasAllOneValues(convOp.getStrides()))
+    return rewriter.notifyMatchFailure(convOp, "expected all ones for strides");
+
+  auto filterShape = filterType.getShape();
+  int64_t filterF = filterShape[0];
+  int64_t filterH = filterShape[1];
+  int64_t filterW = filterShape[2];
+  int64_t filterC = filterShape[3];
+  auto inputShape = inputType.getShape();
+  int64_t inputN = inputShape[0];
+  int64_t inputH = inputShape[1];
+  int64_t inputW = inputShape[2];
+  int64_t inputC = inputShape[3];
+  auto outputShape = outputType.getShape();
+  int64_t outputN = outputShape[0];
+  int64_t outputH = outputShape[1];
+  int64_t outputW = outputShape[2];
+  int64_t outputF = outputShape[3];
+
+  // Only support F(m x m, r x r), F(m x 1, r x 1) or F(1 x m, 1 x r)
+  bool isSupportedFilter = false;
+  if (filterH == filterW && filterH == r)
+    isSupportedFilter = true;
+  if (filterH == r && filterW == 1)
+    isSupportedFilter = true;
+  if (filterH == 1 && filterW == r)
+    isSupportedFilter = true;
+
+  if (!isSupportedFilter)
+    return rewriter.notifyMatchFailure(
+        convOp, "only support filter (r x r), (r x 1) or (1 x r)");
+
+  // Currently, we support (m, r) = (2, 3) or (4, 3) or (2, 5)
+  static const llvm::SmallVector<TransformMapKeyTy, 3> validConfigs = {
+      F_2_3, F_4_3, F_2_5};
+
+  TransformMapKeyTy key = {m, r};
+  auto it = std::find(validConfigs.begin(), validConfigs.end(), key);
+  // If we cannot find the constant transformation matrix, it means we do
+  // not support this configuration yet.
+  if (it == validConfigs.end())
+    return failure();
+
+  // All the criterias are satisfied. We can do Winograd Conv2D.
+  Location loc = convOp.getLoc();
+
+  // For F(m x 1, r x 1), we only need to do left side transform.
+  bool leftTransform = filterH != 1;
+  // For F(1 x m, 1 x r), we only need to do right side transform.
+  bool rightTransform = filterW != 1;
+  int64_t heightM = leftTransform ? m : 1;
+  int64_t widthM = rightTransform ? m : 1;
+  int64_t heightR = leftTransform ? r : 1;
+  int64_t widthR = rightTransform ? r : 1;
+
+  // --- Create operator for filter transform ---
+  Type elementType = filterType.getElementType();
+  int64_t alphaH = heightM + heightR - 1;
+  int64_t alphaW = widthM + widthR - 1;
+  int64_t tileH = llvm::divideCeilSigned(outputH, heightM);
+  int64_t tileW = llvm::divideCeilSigned(outputW, widthM);
+  auto retType = RankedTensorType::get(
+      {tileH, tileW, alphaH, alphaW, filterC, filterF}, elementType);
+  Value retValue =
+      rewriter.create<tensor::EmptyOp>(loc, retType.getShape(), elementType);
+  auto transformedFilter = rewriter.create<linalg::WinogradFilterTransformOp>(
+      loc, retType, filter, retValue, m, r);
+
+  // --- Create operator for input transform ---
+
+  // When input size - (r - 1) is not aligned with output tile size, we need to
+  // pad the input data to create the full tiles as tiling.
+  int64_t alignedInputH = tileH * heightM + (heightR - 1);
+  int64_t alignedInputW = tileW * widthM + (widthR - 1);
+  if (alignedInputH != inputH || alignedInputW != inputW) {
+    auto alignedInputType = RankedTensorType::get(
+        {inputN, alignedInputH, alignedInputW, inputC}, elementType);
+    input = insertToAlignedTensor(rewriter, loc, input, alignedInputType);
+  }
+
+  retType = RankedTensorType::get(
+      {tileH, tileW, alphaH, alphaW, inputN, inputC}, elementType);
+  retValue =
+ ...
[truncated]

Define high level winograd operators and convert conv_2d_nhwc_fhwc into
winograd operators. According to Winograd Conv2D algorithm, we need
three transform operators for input, filter, and output transformation.

The formula of Winograd Conv2D algorithm is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A

The implementation is based on the paper, Fast Algorithm for
Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)
@Hsiangkai Hsiangkai force-pushed the users/hsiangkai/winograd-ops branch from 276ed89 to 35df16f Compare June 20, 2024 12:11
@Hsiangkai
Copy link
Contributor Author

Sorry, I am still figuring out how to create stack PRs.

@Hsiangkai Hsiangkai closed this Jun 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants