Convert https://pjreddie.com/darknet/yolo/ into pytorch
Switch branches/tags
Clone or download
Pull request Compare This branch is 1 commit ahead of marvis:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
cfg
data
layers/batchnorm
models
scripts
tools/lmdb
.gitignore
FocalLoss.py
LICENSE
README.md
cfg.py
darknet.py
dataset.py
debug.py
demo.py
detect.py
eval.py
how_to_debug.md
image.py
partial.py
recall.py
region_loss.py
train.py
utils.py
valid.py

README.md

pytorch-yolo2

Convert https://pjreddie.com/darknet/yolo/ into pytorch. This repository is trying to achieve the following goals.

  • implement RegionLoss, MaxPoolStride1, Reorg, GolbalAvgPool2d
  • implement route layer
  • detect, partial, valid functions
  • load darknet cfg
  • load darknet saved weights
  • save as darknet weights
  • fast evaluation
  • pascal voc validation
  • train pascal voc
  • LMDB data set
  • Data augmentation
  • load/save caffe prototxt and weights
  • reproduce darknet's training results
  • convert weight/cfg between pytorch caffe and darknet
  • add focal loss

Detection Using A Pre-Trained Model

wget http://pjreddie.com/media/files/yolo.weights
python detect.py cfg/yolo.cfg yolo.weights data/dog.jpg

You will see some output like this:

layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32
    1 max          2 x 2 / 2   416 x 416 x  32   ->   208 x 208 x  32
    ......
   30 conv    425  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 425
   31 detection
Loading weights from yolo.weights... Done!
data/dog.jpg: Predicted in 0.014079 seconds.
truck: 0.934711
bicycle: 0.998013
dog: 0.990524

Real-Time Detection on a Webcam

python demo.py cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights

Training YOLO on VOC

Get The Pascal VOC Data
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar
Generate Labels for VOC
wget http://pjreddie.com/media/files/voc_label.py
python voc_label.py
cat 2007_train.txt 2007_val.txt 2012_*.txt > voc_train.txt
Modify Cfg for Pascal Data

Change the cfg/voc.data config file

train  = train.txt
valid  = 2007_test.txt
names = data/voc.names
backup = backup
Download Pretrained Convolutional Weights

Download weights from the convolutional layers

wget http://pjreddie.com/media/files/darknet19_448.conv.23

or run the following command:

python partial.py cfg/darknet19_448.cfg darknet19_448.weights darknet19_448.conv.23 23
Train The Model
python train.py cfg/voc.data cfg/yolo-voc.cfg darknet19_448.conv.23
Evaluate The Model
python valid.py cfg/voc.data cfg/yolo-voc.cfg yolo-voc.weights
python scripts/voc_eval.py results/comp4_det_test_

mAP test on released models

yolo-voc.weights 544 0.7682 (paper: 78.6)
yolo-voc.weights 416 0.7513 (paper: 76.8)
tiny-yolo-voc.weights 416 0.5410 (paper: 57.1)


Focal Loss

A implementation of paper Focal Loss for Dense Object Detection

We get the results by using Focal Loss to replace CrossEntropyLoss in RegionLosss.

gama training set val set mAP@416 mAP@544 Notes
0 VOC2007+2012 VOC2007 73.05 74.69 std-Cross Entropy Loss
1 VOC2007+2012 VOC2007 73.63 75.26 Focal Loss
2 VOC2007+2012 VOC2007 74.08 75.49 Focal Loss
3 VOC2007+2012 VOC2007 73.73 75.20 Focal Loss
4 VOC2007+2012 VOC2007 73.53 74.95 Focal Loss

Problems

1. Running variance difference between darknet and pytorch

Change the code in normalize_cpu to make the same result

normalize_cpu:
x[index] = (x[index] - mean[f])/(sqrt(variance[f] + .00001f));

Training on your own data

  1. Padding your images into square size and produce the corresponding label files.
  2. Modify the resize strageties in listDataset. Currently the resize scales range from 320 ~ 608, and the resize intervals is 64, which should be equal to batch_size or several times of batch_size.
  3. Add warm up learning rate (scales=0.1,10,.1,.1)
  4. Train your model as VOC does.

License

MIT License (see LICENSE file).

Contribution

Thanks for the contributions from @iceflame89 for the image augmentation and @huaijin-chen for focal loss.