Skip to content

Commit

Permalink
Rollup merge of rust-lang#108927 - Ayush1325:pal-cleanup, r=workingju…
Browse files Browse the repository at this point in the history
…bilee

Move __thread_local_inner to sys

Move `__thread_local_inner` macro in `crate::thread::local` to `crate::sys`. Initially, I was thinking about removing this macro completely, but I could not find a way to create the generic statics without macros, so in the end, I just moved to code around.

This probably will need a rebase once rust-lang#108917 is merged

r? `@workingjubilee`
  • Loading branch information
matthiaskrgr committed Mar 11, 2023
2 parents 7be58e7 + 5828910 commit 0b900cb
Show file tree
Hide file tree
Showing 10 changed files with 724 additions and 610 deletions.
1 change: 1 addition & 0 deletions library/std/src/sys/common/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@

pub mod alloc;
pub mod small_c_string;
pub mod thread_local;

#[cfg(test)]
mod tests;
276 changes: 276 additions & 0 deletions library/std/src/sys/common/thread_local/fast_local.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,276 @@
#[doc(hidden)]
#[macro_export]
#[allow_internal_unstable(
thread_local_internals,
cfg_target_thread_local,
thread_local,
libstd_thread_internals
)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[cfg_attr(not(windows), inline)] // see comments below
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// If the platform has support for `#[thread_local]`, use it.
#[thread_local]
static mut VAL: $t = INIT_EXPR;

// If a dtor isn't needed we can do something "very raw" and
// just get going.
if !$crate::mem::needs_drop::<$t>() {
unsafe {
return $crate::option::Option::Some(&VAL)
}
}

// 0 == dtor not registered
// 1 == dtor registered, dtor not run
// 2 == dtor registered and is running or has run
#[thread_local]
static mut STATE: $crate::primitive::u8 = 0;

unsafe extern "C" fn destroy(ptr: *mut $crate::primitive::u8) {
let ptr = ptr as *mut $t;

unsafe {
$crate::debug_assert_eq!(STATE, 1);
STATE = 2;
$crate::ptr::drop_in_place(ptr);
}
}

unsafe {
match STATE {
// 0 == we haven't registered a destructor, so do
// so now.
0 => {
$crate::thread::__LocalKeyInner::<$t>::register_dtor(
$crate::ptr::addr_of_mut!(VAL) as *mut $crate::primitive::u8,
destroy,
);
STATE = 1;
$crate::option::Option::Some(&VAL)
}
// 1 == the destructor is registered and the value
// is valid, so return the pointer.
1 => $crate::option::Option::Some(&VAL),
// otherwise the destructor has already run, so we
// can't give access.
_ => $crate::option::Option::None,
}
}
}

unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};

// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }

// When reading this function you might ask "why is this inlined
// everywhere other than Windows?", and that's a very reasonable
// question to ask. The short story is that it segfaults rustc if
// this function is inlined. The longer story is that Windows looks
// to not support `extern` references to thread locals across DLL
// boundaries. This appears to at least not be supported in the ABI
// that LLVM implements.
//
// Because of this we never inline on Windows, but we do inline on
// other platforms (where external references to thread locals
// across DLLs are supported). A better fix for this would be to
// inline this function on Windows, but only for "statically linked"
// components. For example if two separately compiled rlibs end up
// getting linked into a DLL then it's fine to inline this function
// across that boundary. It's only not fine to inline this function
// across a DLL boundary. Unfortunately rustc doesn't currently
// have this sort of logic available in an attribute, and it's not
// clear that rustc is even equipped to answer this (it's more of a
// Cargo question kinda). This means that, unfortunately, Windows
// gets the pessimistic path for now where it's never inlined.
//
// The issue of "should enable on Windows sometimes" is #84933
#[cfg_attr(not(windows), inline)]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
#[thread_local]
static __KEY: $crate::thread::__LocalKeyInner<$t> =
$crate::thread::__LocalKeyInner::<$t>::new();

// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing default value");
}
}
__init()
})
}
}

unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}

#[doc(hidden)]
pub mod fast {
use super::super::lazy::LazyKeyInner;
use crate::cell::Cell;
use crate::sys::thread_local_dtor::register_dtor;
use crate::{fmt, mem, panic};

#[derive(Copy, Clone)]
enum DtorState {
Unregistered,
Registered,
RunningOrHasRun,
}

// This data structure has been carefully constructed so that the fast path
// only contains one branch on x86. That optimization is necessary to avoid
// duplicated tls lookups on OSX.
//
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
pub struct Key<T> {
// If `LazyKeyInner::get` returns `None`, that indicates either:
// * The value has never been initialized
// * The value is being recursively initialized
// * The value has already been destroyed or is being destroyed
// To determine which kind of `None`, check `dtor_state`.
//
// This is very optimizer friendly for the fast path - initialized but
// not yet dropped.
inner: LazyKeyInner<T>,

// Metadata to keep track of the state of the destructor. Remember that
// this variable is thread-local, not global.
dtor_state: Cell<DtorState>,
}

impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}

impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
}

// note that this is just a publicly-callable function only for the
// const-initialized form of thread locals, basically a way to call the
// free `register_dtor` function defined elsewhere in std.
pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
unsafe {
register_dtor(a, dtor);
}
}

pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See the definitions of `LazyKeyInner::get` and
// `try_initialize` for more information.
//
// The caller must ensure no mutable references are ever active to
// the inner cell or the inner T when this is called.
// The `try_initialize` is dependant on the passed `init` function
// for this.
unsafe {
match self.inner.get() {
Some(val) => Some(val),
None => self.try_initialize(init),
}
}
}

// `try_initialize` is only called once per fast thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
//
// Macos: Inlining this function can cause two `tlv_get_addr` calls to
// be performed for every call to `Key::get`.
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
#[inline(never)]
unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See comment above (this function doc).
if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
// SAFETY: See comment above (this function doc).
Some(unsafe { self.inner.initialize(init) })
} else {
None
}
}

// `try_register_dtor` is only called once per fast thread local
// variable, except in corner cases where thread_local dtors reference
// other thread_local's, or it is being recursively initialized.
unsafe fn try_register_dtor(&self) -> bool {
match self.dtor_state.get() {
DtorState::Unregistered => {
// SAFETY: dtor registration happens before initialization.
// Passing `self` as a pointer while using `destroy_value<T>`
// is safe because the function will build a pointer to a
// Key<T>, which is the type of self and so find the correct
// size.
unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
self.dtor_state.set(DtorState::Registered);
true
}
DtorState::Registered => {
// recursively initialized
true
}
DtorState::RunningOrHasRun => false,
}
}
}

unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
let ptr = ptr as *mut Key<T>;

// SAFETY:
//
// The pointer `ptr` has been built just above and comes from
// `try_register_dtor` where it is originally a Key<T> coming from `self`,
// making it non-NUL and of the correct type.
//
// Right before we run the user destructor be sure to set the
// `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
// causes future calls to `get` to run `try_initialize_drop` again,
// which will now fail, and return `None`.
//
// Wrap the call in a catch to ensure unwinding is caught in the event
// a panic takes place in a destructor.
if let Err(_) = panic::catch_unwind(panic::AssertUnwindSafe(|| unsafe {
let value = (*ptr).inner.take();
(*ptr).dtor_state.set(DtorState::RunningOrHasRun);
drop(value);
})) {
rtabort!("thread local panicked on drop");
}
}
}
109 changes: 109 additions & 0 deletions library/std/src/sys/common/thread_local/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
//! The following module declarations are outside cfg_if because the internal
//! `__thread_local_internal` macro does not seem to be exported properly when using cfg_if
#![unstable(feature = "thread_local_internals", reason = "should not be necessary", issue = "none")]

#[cfg(all(target_thread_local, not(all(target_family = "wasm", not(target_feature = "atomics")))))]
mod fast_local;
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics")))
))]
mod os_local;
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
mod static_local;

#[cfg(not(test))]
cfg_if::cfg_if! {
if #[cfg(all(target_family = "wasm", not(target_feature = "atomics")))] {
#[doc(hidden)]
pub use static_local::statik::Key;
} else if #[cfg(all(target_thread_local, not(all(target_family = "wasm", not(target_feature = "atomics")))))] {
#[doc(hidden)]
pub use fast_local::fast::Key;
} else if #[cfg(all(not(target_thread_local), not(all(target_family = "wasm", not(target_feature = "atomics")))))] {
#[doc(hidden)]
pub use os_local::os::Key;
}
}

#[doc(hidden)]
#[cfg(test)]
pub use realstd::thread::__LocalKeyInner as Key;

mod lazy {
use crate::cell::UnsafeCell;
use crate::hint;
use crate::mem;

pub struct LazyKeyInner<T> {
inner: UnsafeCell<Option<T>>,
}

impl<T> LazyKeyInner<T> {
pub const fn new() -> LazyKeyInner<T> {
LazyKeyInner { inner: UnsafeCell::new(None) }
}

pub unsafe fn get(&self) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
unsafe { (*self.inner.get()).as_ref() }
}

/// The caller must ensure that no reference is active: this method
/// needs unique access.
pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
// Execute the initialization up front, *then* move it into our slot,
// just in case initialization fails.
let value = init();
let ptr = self.inner.get();

// SAFETY:
//
// note that this can in theory just be `*ptr = Some(value)`, but due to
// the compiler will currently codegen that pattern with something like:
//
// ptr::drop_in_place(ptr)
// ptr::write(ptr, Some(value))
//
// Due to this pattern it's possible for the destructor of the value in
// `ptr` (e.g., if this is being recursively initialized) to re-access
// TLS, in which case there will be a `&` and `&mut` pointer to the same
// value (an aliasing violation). To avoid setting the "I'm running a
// destructor" flag we just use `mem::replace` which should sequence the
// operations a little differently and make this safe to call.
//
// The precondition also ensures that we are the only one accessing
// `self` at the moment so replacing is fine.
unsafe {
let _ = mem::replace(&mut *ptr, Some(value));
}

// SAFETY: With the call to `mem::replace` it is guaranteed there is
// a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
// will never be reached.
unsafe {
// After storing `Some` we want to get a reference to the contents of
// what we just stored. While we could use `unwrap` here and it should
// always work it empirically doesn't seem to always get optimized away,
// which means that using something like `try_with` can pull in
// panicking code and cause a large size bloat.
match *ptr {
Some(ref x) => x,
None => hint::unreachable_unchecked(),
}
}
}

/// The other methods hand out references while taking &self.
/// As such, callers of this method must ensure no `&` and `&mut` are
/// available and used at the same time.
#[allow(unused)]
pub unsafe fn take(&mut self) -> Option<T> {
// SAFETY: See doc comment for this method.
unsafe { (*self.inner.get()).take() }
}
}
}
Loading

0 comments on commit 0b900cb

Please sign in to comment.