Skip to content
Empowering everyone to build reliable and efficient software.
Branch: master
Clone or download
bors Auto merge of #57018 - dcreager:redundant-linker, r=alexcrichton
Keep last redundant linker flag, not first

When a library (L1) is passed to the linker multiple times, this is sometimes purposeful: there might be several other libraries in the linker command (L2 and L3) that all depend on L1.  You'd end up with a (simplified) linker command that looks like:

-l2 -l1 -l3 -l1

With the previous behavior, when rustc encountered a redundant library, it would keep the first instance, and remove the later ones, resulting in:

-l2 -l1 -l3

This can cause a linker error, because on some platforms (e.g. Linux), the linker will only include symbols from L1 that are needed *at the point it's referenced in the command line*.  So if L3 depends on additional symbols from L1, which aren't needed by L2, the linker won't know to include them, and you'll end up with "undefined symbols" errors.

A better behavior is to keep the *last* instance of the library:

-l2 -l3 -l1

This ensures that all "downstream" libraries have been included in the linker command before the "upstream" library is referenced.

Fixes #47989
Latest commit 9c499cc Mar 20, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
src Auto merge of #57018 - dcreager:redundant-linker, r=alexcrichton Mar 20, 2019
.gitattributes ignore images line ending on older git versions Jan 23, 2019
.gitmodules update Cargo.lock and miri URL Feb 19, 2019
.mailmap Rollup merge of #59252 - lcnr:mailmap, r=Centril Mar 19, 2019
.travis.yml CI: Set job names. Mar 16, 2019 Make extern ref HTTPS Jan 7, 2019 Fix more nursery links in Feb 21, 2019
COPYRIGHT Rebase to the llvm-project monorepo Jan 25, 2019
Cargo.lock Directly reference the roadmap upstream Mar 19, 2019
Cargo.toml submodules: update clippy from 39bd8449 to c63b6349 Jan 7, 2019
LICENSE-APACHE Update license, add license boilerplate to most files. Remainder will… Dec 4, 2012
LICENSE-MIT LICENSE-MIT: Remove inaccurate (misattributed) copyright notice Jul 26, 2017 Update Jan 18, 2019
config.toml.example [bootstrap] Remove llvm.enabled config Mar 16, 2019
configure rustbuild: Rewrite the configure script in Python Aug 28, 2017 Remove licenses Dec 26, 2018

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installation" from The Book.

Installing from Source

Note: If you wish to contribute to the compiler, you should read this chapter of the rustc-guide instead.

Building on *nix

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x or later
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone
    $ cd rust
  1. Build and install:

    $ ./ build && sudo ./ install

    Note: Install locations can be adjusted by copying the config file from ./config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options, such as enabling debug information, are also supported, and are documented in the config file.

    When complete, sudo ./ install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.


MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./ build && ./ install


MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

> CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
> python build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes

$ ./configure
$ make && sudo make install

When using the configure script, the generated file may override the config.toml file. To go back to the config.toml file, delete the generated file.

Building Documentation

If you’d like to build the documentation, it’s almost the same:

$ ./ doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.


Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, 10, ...)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

There is more advice about hacking on Rust in

Getting Help

The Rust community congregates in a few places:


To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

The rustc guide might be a good place to start if you want to find out how various parts of the compiler work.

Also, you may find the rustdocs for the compiler itself useful.


Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.


You can’t perform that action at this time.