Skip to content

Latest commit

 

History

History
660 lines (527 loc) · 43.7 KB

mep-wgfs-nm532-I2.adoc

File metadata and controls

660 lines (527 loc) · 43.7 KB

Recommended Values of Standard Frequencies: Iodine (\$ii(lambda) ~~ 532 "unitsml(nm)"\$)

Absorbing molecule 127I2, \$"a"_{10}\$ component, R(56) 32-0 transition [1]

The values

\$f = 563260223513 "unitsml(kHz)"\$
\$ii(lambda) = 532245036.104 "unitsml(fm)"\$

with a relative standard uncertainty of \$8.9 xx 10^(12)\$ apply to the radiation of a frequency-doubled Nd:YAG laser, stabilized with an iodine cell external to the laser, subject to the conditions:

  • cold-finger temperature \$(–15 +- 1) "unitsml(degC)"\$ [2]

  • frequency modulation width, peak-to-peak, \$(1 +- 0.2) "unitsml(MHz)"\$ for \$3f\$ detection cases;

  • saturating beam intensity of \$(17 +- 11) "unitsml(mW*cm^(-2))"\$

Source data

Adopted value

\$f = 563260223513 (5) "unitsml(kHz)"\$
\$u_c//y = 8.9 xx 10^(-12)\$

for which:
\$ii(lambda) = 532245036.104 (5) "unitsml(fm)"\$
\$u_c//y = 8.9 xx 10^(-12)\$

calculated from

\$f // "unitsml(kHz)"\$ \$u_c//y\$ source data

\$563260223515.0\$

\$9.2 xx 10^(-12)\$

\$563260223514.5\$

\$8.9 xx 10^(-12)\$

[1], [2]

\$563260223510.1\$

\$5 xx 10^(-13)\$

[3]

Unweighted mean:

\$f = 563260223513.2 "unitsml(kHz)"\$

The standard uncertainty calculated from the dispersion of the three values is \$2.7 "unitsml(kHz)"\$. Taking into account the frequency dependence on the cell quality and other effects, the CCL preferred to adopt a standard uncertainty of \$5 "unitsml(kHz)"\$, corresponding to a relative standard uncertainty of \$8.9 xx 10^(-12)\$.

Since 2001, it was noted that the global mean has changed from …​..513.2 to …​..511.5 \$"unitsml(kHz)"\$, with a standard deviation of \$2.6 "unitsml(kHz)"\$. Given the possible shifts due to beam alignment, etalon effects and other technical effects, it was decided not to change the 2001 value or uncertainty but rather to define more comprehensively the operating conditions as follows:

  • cold-finger temperature \$(–15 +- 1) "unitsml(degC)"\$ [2]

  • frequency modulation width, peak-to-peak, \$(1 +- 0.2) "unitsml(MHz)"\$ for \$3f\$ detection cases;

  • saturating beam intensity of \$(17 +- 11) "unitsml(mW*cm^(-2))"\$

Other 127I2 absorbing transitions close to this transition may also be used by making reference to the following frequency differences, using the \$"a"_{10}\$ component of the R(56) 32-0 transition as a reference, see also source data :

line no

transition

comp.

\$f_(xy) = [ f(y , x) - f("a"_{10}, R(56) 32-0) ] // "unitsml(kHz)"\$

\$x\$

\$y\$

\$f_(xy)\$

\$u_c // "unitsml(kHz)"\$

1111

P(53) 32-0

\$"a"_1\$

\$2599708.0\$

\$5.0\$

1110

R(56) 32-0

\$"a"_{10}\$

\$0.0\$

 — 

1109

P(83) 33-0

\$"a"_{21}\$

\$–15682075.2\$

\$5.0\$

R(134) 36-0

\$"a"_1\$

\$–17173681.7\$

\$5.0\$

1108

R(106) 34-0

\$"a"_1\$

\$–30434763.4\$

\$5.0\$

1107

R(86) 33-0

\$"a"_1\$

\$–32190406.0\$

\$5.0\$

1106

P(119) 35-0

\$"a"_1\$

\$–36840163.0\$

\$5.0\$

1105

P(54) 32-0

\$"a"_1\$

\$–47588897.1\$

\$5.0\$

1104

R(57) 32-0

\$"a"_1\$

\$–50946884.7\$

\$5.0\$

1103

P(132) 36-0

\$"a"_1\$

\$–73517088.1\$

\$5.0\$

1101

R(145) 37-0

\$"a"_1\$

\$–84992177.6\$

\$5.0\$

R(122) 35-0

\$"a"_1\$

\$–90981724.1\$

\$5.0\$

1100

P(84) 33-0

\$"a"_1\$

\$–95929863.0\$

\$5.0\$

109]

P(104) 34-0

\$"a"_1\$

\$–98069775.0\$

\$5.0\$

P(55) 32-0

\$"a"_1\$

\$–98766591.0\$

\$5.0\$

1098

R(58) 32-0

\$"a"_1\$

\$–102159978.2\$

\$5.0\$

1097

R(87) 33-0

\$"a"_1\$

\$–111935173.1\$

\$5.0\$

where \$f(y,x)\$ represents the frequency of the transition denoted \$y,x\$ and \$f("a"_{10}, " R(56)" "32-0")\$ the frequency of the reference transition. The CCL preferred to assign an uncertainty of \$5 "unitsml(kHz)"\$ to all listed frequency differences, regarding the possible influence of the quality of the iodine cell, background slopes and the small number of data for each frequency difference available.

In 2007 the CIPM [24] at its 96th meeting on a proposition of the CCL [25] recommended (Recommendation 1; CI-2007) that the above list shall be extended to the following lines

transition

comp.

\$f_(xy) = [ f(y , x) - f("a"_{10}, "R(56) 32-0") ] // "unitsml(kHz)"\$

Ref.

\$x\$

\$y\$

\$f_(xy)\$

\$u_c // "unitsml(kHz)"\$

P(142) 37-0

\$"a"_1\$

\$20123511.4\$

\$5.0\$

[26]

R(121) 35-0

\$"a"_1\$

\$27539228.6\$

\$5.0\$

[26]

R(85) 33-0

\$"a"_1\$

\$46496559.1\$

\$5.0\$

[27]

Source data

Holzwarth et al. [4] give

\$f_(a10) = 563260223508.7 "unitsml(kHz)"\$
\$u_c = 5.2 "unitsml(kHz)"\$

at a cold-finger temperature of \$–5 "unitsml(degC)"\$ (iodine pressure = \$2.46 "unitsml(Pa)"\$) [3].

Nevsky et al. [5] give

\$f_(a10) = 563260223507.8 "unitsml(kHz)"\$
\$u_c//y = 2.0 xx 10^(-12)\$

at a cold-finger temperature of \$–5 "unitsml(degC)"\$ (iodine pressure = \$2.46 "unitsml(Pa)"\$).

These two measurements have been carried out with the same iodine cell. Therefore, the CCL decided to consider the arithmetic mean of these two data, i.e.

\$f_(a10) = (563260223508.7 + 563260223507.8)//2 = 563260223508.25 "unitsml(kHz)"\$

For a reference temperature of \$–15 "unitsml(degC)"\$ (iodine pressure = \$0.83 "unitsml(Pa)"\$), using a pressure dependence of \$–4.2 "unitsml(kHz/Pa)"\$ [5], a correction of \$+6.8 "unitsml(kHz)"\$ has to be applied, giving

\$f_(a10) = 563260223515.0 "unitsml(kHz)"\$
\$u_c//y = 9.2 xx 10^(-12)\$.

The following values have been obtained for the frequency differences between several 127I2 absorbing transitions and the R(56) 32-0 transition, at an iodine cold-finger temperature of \$–15 "unitsml(degC)"\$ (iodine pressure = \$0.83 "unitsml(Pa)"\$):

line no

transition

comp.

\$[ f(y , x) - f("a"_{10}," R(56) 32-0)"] // "unitsml(kHz)"\$

\$x\$

\$y\$

[7]

[8]

[4]

[5]

unw. mean

\$u // "unitsml(kHz)"\$

1111

P(53) 32-0

\$"a"_1\$

\$2599708.0\$

\$2599708.0\$

\$2599708.0\$

\$0.0\$

1110

R(56) 32-0

\$"a"_{10}\$

\$0.0\$

\$0.0\$

\$0.0\$

\$0.0\$

\$0.0\$

1109

P(83) 33-0

\$"a"_{21}\$

\$–15682074.1\$

\$–15682076.2\$

\$–15682075.2\$

\$1.5\$

R(134) 36-0

\$"a"_1\$

\$–17173680.4\$

\$–17173682.9\$

\$–17173681.7\$

\$1.8\$

1108

R(106) 34-0

\$"a"_1\$

\$–30434761.5\$

\$–30434765.2\$

\$–30434763.4\$

\$2.6\$

1107

R(86) 33-0

\$"a"_1\$

\$–32190404.0\$

\$–32190408.0\$

\$–32190406.0\$

\$2.8\$

1106

P(119) 35-0

\$"a"_1\$

\$–36840161.5\$

\$–36840164.4\$

\$–36840163.0\$

\$2.1\$

1105

P(54) 32-0

\$"a"_1\$

\$–47588892.5\$

\$–47588898.2\$

\$–47588899.8\$

\$–47588898.0\$

\$–47588897.1\$

\$3.2\$

1104

R(57) 32-0

\$"a"_1\$

\$–50946880.4\$

\$–50946886.4\$

\$–50946887.2\$

\$–50946884.7\$

\$3.7\$

1103

P(132) 36-0

\$"a"_1\$

\$–73517088.1\$

1101

R(145) 37-0

\$"a"_1\$

\$–84992177.6\$

R(122) 35-0

\$"a"_1\$

\$–90981724.1\$

1100

P(84) 33-0

\$"a"_1\$

\$–95929863.0\$

1099

P(104) 34-0

\$"a"_1\$

\$–98069775.0\$

P(55) 32-0

\$"a"_1\$

\$–98766590.0\$

\$–98766591.9\$

\$–98766591.0\$

\$1.4\$

1098

R(58) 32-0

\$"a"_1\$

\$–102159977.4\$

\$–102159979.0\$

\$–102159978.2\$

\$1.2\$

1097

R(87) 33-0

\$"a"_1\$

\$–111935173.1\$

where \$f(y,x)\$ represents the frequency of the transition denoted \$y,x\$ and \$f("a"_{10}, R(56) 32-0)\$ the frequency of the reference transition.

These tables replace those published in BIPM Com. Cons. Long., 2001, 10, 151-167 and Metrologia, 2003, 40, 116-120.

The notation for the transitions and the components is that used in the source references. The values adopted for the frequency intervals are the weighted means of the values given in the references.

For the uncertainties, account has been taken of:

  • the uncertainties given by the authors;

  • the spread in the different determinations of a single component;

  • the effect of any perturbing components;

  • the difference between the calculated and the measured values.

In the tables, \$u_c\$ represents the estimated combined standard uncertainty (\$1 ii(sigma)\$).
All transitions in molecular iodine refer to the B-X system.

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(87) 33-0 [no 1097]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{12}\$

\$582.6721\$

\$0.0020\$

\$"a"_2\$

\$51.5768\$

\$0.0020\$

\$"a"_{13}\$

\$622.8375\$

\$0.0020\$

\$"a"_3\$

\$101.4407\$

\$0.0020\$

\$"a"_{14}\$

\$663.9140\$

\$0.0020\$

\$"a"_4\$

\$282.4331\$

\$0.0020\$

\$"a"_{15}\$

\$730.3226\$

\$0.0020\$

\$"a"_5\$

\$332.2313\$

\$0.0020\$

\$"a"_{16}\$

\$752.4797\$

\$0.0020\$

\$"a"_6\$

\$342.2223\$

\$0.0020\$

\$"a"_{17}\$

\$778.0522\$

\$0.0020\$

\$"a"_7\$

\$390.3168\$

\$0.0020\$

\$"a"_{18}\$

\$799.4548\$

\$0.0020\$

\$"a"_8\$

\$445.6559\$

\$0.0020\$

\$"a"_{19}\$

\$893.1211\$

\$0.0020\$

\$"a"_9\$

\$462.0620\$

\$0.0020\$

\$"a"_{20}\$

\$907.5209\$

\$0.0020\$

\$"a"_{10}\$

\$497.5450\$

\$0.0020\$

\$"a"_{21}\$

\$923.5991\$

\$0.0020\$

\$"a"_{11}\$

\$511.9546\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(87) 33-0) "- f ("a"_{10}," R(56) 32-0") = -111935173" (5)" "unitsml(kHz)"\$ [9]

Ref. [10]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(87) 33-0 [no 1098]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{10}\$

\$571.5686\$

\$0.0020\$

\$"a"_2\$

\$259.1938\$

\$0.0020\$

\$"a"_{11}\$

\$697.9347\$

\$0.0020\$

\$"a"_5\$

\$311.8933\$

\$0.0020\$

\$"a"_{12}\$

\$702.8370\$

\$0.0020\$

\$"a"_6\$

\$401.3702\$

\$0.0020\$

\$"a"_{13}\$

\$726.0151\$

\$0.0020\$

\$"a"_7\$

\$416.7177\$

\$0.0020\$

\$"a"_{14}\$

\$732.3220\$

\$0.0020\$

\$"a"_8\$

\$439.9735\$

\$0.0020\$

\$"a"_{15}\$

\$857.9730\$

\$0.0020\$

\$"a"_9\$

\$455.4891\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(58) 32-0) "- f ("a"_{10}," R(56) 32-0") = -102159978" (5)" "unitsml(kHz)"\$ [9]

Ref. [11]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(55) 32-0

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{13}\$

\$609.4478\$

\$0.0020\$

\$"a"_2\$

\$37.8987\$

\$0.0020\$

\$"a"_{14}\$

\$648.9064\$

\$0.0020\$

\$"a"_3\$

\$73.8521\$

\$0.0020\$

\$"a"_{15}\$

\$714.0690\$

\$0.0020\$

\$"a"_4\$

\$272.2124\$

\$0.0020\$

\$"a"_{16}\$

\$739.8350\$

\$0.0020\$

\$"a"_7\$

\$373.1260\$

\$0.0020\$

\$"a"_{17}\$

\$763.0081\$

\$0.0020\$

\$"a"_8\$

\$437.4166\$

\$0.0020\$

\$"a"_{18}\$

\$788.2234\$

\$0.0020\$

\$"a"_9\$

\$455.3851\$

\$0.0020\$

\$"a"_{19}\$

\$879.7357\$

\$0.0020\$

\$"a"_{10}\$

\$477.0210\$

\$0.0020\$

\$"a"_{20}\$

\$893.4676\$

\$0.0020\$

\$"a"_{11}\$

\$490.5588\$

\$0.0020\$

\$"a"_{21}\$

\$910.3088\$

\$0.0020\$

\$"a"_{12}\$

\$573.0377\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(55) 32-0) "- f ("a"_{10}," R(56) 32-0") = -98766591" (5)" "unitsml(kHz)"\$ [9]

Ref. [11]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(104) 34-0 [no 1099]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$466.6137\$

\$0.0020\$

\$"a"_2\$

\$238.8227\$

\$0.0020\$

\$"a"_{10}\$

\$570.8323\$

\$0.0020\$

\$"a"_3\$

\$277.4934\$

\$0.0020\$

\$"a"_{11}\$

\$688.5193\$

\$0.0020\$

\$"a"_4\$

\$293.3463\$

\$0.0020\$

\$"a"_{12}\$

\$699.1488\$

\$0.0020\$

\$"a"_5\$

\$331.4333\$

\$0.0020\$

\$"a"_{13}\$

\$727.8544\$

\$0.0020\$

\$"a"_6\$

\$389.0585\$

\$0.0020\$

\$"a"_{14}\$

\$739.2895\$

\$0.0020\$

\$"a"_7\$

\$405.6376\$

\$0.0020\$

\$"a"_{15}\$

\$856.7001\$

\$0.0020\$

\$"a"_8\$

\$450.2193\$

\$0.0020\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(104) 34-0) "- f ("a"_{10}," R(56) 32-0") = -98069775" (5)" "unitsml(kHz)"\$ [9]

Ref. [11]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(84) 33-0 [no 1100]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$459.8476\$

\$0.0020\$

\$"a"_2\$

\$249.8445\$

\$0.0020\$

\$"a"_{10}\$

\$571.2806\$

\$0.0020\$

\$"a"_3\$

\$281.2957\$

\$0.0020\$

\$"a"_{11}\$

\$694.0020\$

\$0.0020\$

\$"a"_4\$

\$290.0304\$

\$0.0020\$

\$"a"_{12}\$

\$701.7501\$

\$0.0020\$

\$"a"_5\$

\$320.9041\$

\$0.0020\$

\$"a"_{13}\$

\$726.3808\$

\$0.0020\$

\$"a"_6\$

\$396.5400\$

\$0.0020\$

\$"a"_{14}\$

\$735.0562\$

\$0.0020\$

\$"a"_7\$

\$411.5392\$

\$0.0020\$

\$"a"_{15}\$

\$857.4151\$

\$0.0020\$

\$"a"_8\$

\$444.9362\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(84) 33-0) "- f ("a"_{10}," R(56) 32-0") = -95929863" (5)" "unitsml(kHz)"\$ [9]

Ref. [12]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(122) 35-0

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$475.9553\$

\$0.0020\$

\$"a"_2\$

\$224.7302\$

\$0.0020\$

\$"a"_{10}\$

\$570.3004\$

\$0.0020\$

\$"a"_3\$

\$273.2394\$

\$0.0020\$

\$"a"_{11}\$

\$681.2572\$

\$0.0020\$

\$"a"_4\$

\$297.0396\$

\$0.0020\$

\$"a"_{12}\$

\$695.4307\$

\$0.0020\$

\$"a"_5\$

\$344.9343\$

\$0.0020\$

\$"a"_{13}\$

\$730.2395\$

\$0.0020\$

\$"a"_6\$

\$378.8637\$

\$0.0020\$

\$"a"_{14}\$

\$745.1865\$

\$0.0020\$

\$"a"_7\$

\$398.2113\$

\$0.0020\$

\$"a"_{15}\$

\$855.9386\$

\$0.0020\$

\$"a"_8\$

\$456.8479\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(122) 35-0) "- f ("a"_{10}," R(56) 32-0") = -90981724" (5)" "unitsml(kHz)"\$ [9]

Ref. [12]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(145) 37-0 [no 1101]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{12}\$

\$608.2166\$

\$0.0020\$

\$"a"_2\$

\$111.3681\$

\$0.0020\$

\$"a"_{13}\$

\$680.6255\$

\$0.0020\$

\$"a"_3\$

\$220.5695\$

\$0.0020\$

\$"a"_{14}\$

\$752.7967\$

\$0.0020\$

\$"a"_4\$

\$298.7582\$

\$0.0020\$

\$"a"_{15}\$

\$769.5347\$

\$0.0020\$

\$"a"_5\$

\$376.9445\$

\$0.0020\$

\$"a"_{16}\$

\$799.1414\$

\$0.0020\$

\$"a"_6\$

\$414.9517\$

\$0.0020\$

\$"a"_{17}\$

\$846.4138\$

\$0.0020\$

\$"a"_7\$

\$469.8127\$

\$0.0020\$

\$"a"_{18}\$

\$874.8758\$

\$0.0020\$

\$"a"_8\$

\$491.2288\$

\$0.0020\$

\$"a"_{19}\$

\$940.0615\$

\$0.0020\$

\$"a"_9\$

\$495.5179\$

\$0.0020\$

\$"a"_{20}\$

\$964.5342\$

\$0.0020\$

\$"a"_{10}\$

\$580.7013\$

\$0.0020\$

\$"a"_{21}\$

\$990.2893\$

\$0.0020\$

\$"a"_{11}\$

\$605.3833\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(145) 37-0) "- f ("a"_{10}," R(56) 32-0") = -84992178" (5)" "unitsml(kHz)"\$ [9]

Ref. [10]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(132) 36-0 [no 1103]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$482.3956\$

\$0.0020\$

\$"a"_2\$

\$215.0115\$

\$0.0020\$

\$"a"_{10}\$

\$569.8339\$

\$0.0020\$

\$"a"_3\$

\$270.3841\$

\$0.0020\$

\$"a"_{11}\$

\$676.1016\$

\$0.0020\$

\$"a"_4\$

\$299.4166\$

\$0.0020\$

\$"a"_{12}\$

\$692.6715\$

\$0.0020\$

\$"a"_5\$

\$354.1318\$

\$0.0020\$

\$"a"_{13}\$

\$731.8283\$

\$0.0020\$

\$"a"_6\$

\$371.6729\$

\$0.0020\$

\$"a"_{14}\$

\$749.1808\$

\$0.0020\$

\$"a"_7\$

\$393.0781\$

\$0.0020\$

\$"a"_{15}\$

\$855.2633\$

\$0.0020\$

\$"a"_8\$

\$461.2856\$

\$0.0020\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(132) 36-0) "- f ("a"_{10}," R(56) 32-0") = -73517088" (5)" "unitsml(kHz)"\$ [9]

Ref. [10]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(57) 32-0 [no 1104]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{13}\$

\$610.925\$

\$0.001\$

\$"a"_2\$

\$39.372\$

\$0.001\$

\$"a"_{14}\$

\$650.805\$

\$0.001\$

\$"a"_3\$

\$76.828\$

\$0.001\$

\$"a"_{15}\$

\$715.550\$

\$0.001\$

\$"a"_4\$

\$273.042\$

\$0.001\$

\$"a"_{16}\$

\$741.175\$

\$0.001\$

\$"a"_7\$

\$375.284\$

\$0.001\$

\$"a"_{17}\$

\$764.716\$

\$0.001\$

\$"a"_8\$

\$438.243\$

\$0.001\$

\$"a"_{18}\$

\$789.777\$

\$0.001\$

\$"a"_9\$

\$456.183\$

\$0.001\$

\$"a"_{19}\$

\$881.116\$

\$0.001\$

\$"a"_{10}\$

\$479.201\$

\$0.001\$

\$"a"_{20}\$

\$895.016\$

\$0.001\$

\$"a"_{11}\$

\$492.915\$

\$0.001\$

\$"a"_{21}\$

\$911.901\$

\$0.001\$

\$"a"_{12}\$

\$573.917\$

\$0.001\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(57) 32-0) "- f ("a"_{10}," R(56) 32-0") = -50946885" (5)" "unitsml(kHz)"\$ [9]

Ref. [7], [13]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(54) 32-0 [no 1105]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$454.563\$

\$0.001\$

\$"a"_2\$

\$260.992\$

\$0.001\$

\$"a"_{10}\$

\$571.536\$

\$0.001\$

\$"a"_3\$

\$285.008\$

\$0.001\$

\$"a"_{11}\$

\$698.614\$

\$0.001\$

\$"a"_4\$

\$286.726\$

\$0.001\$

\$"a"_{12}\$

\$702.935\$

\$0.001\$

\$"a"_5\$

\$310.066\$

\$0.001\$

\$"a"_{13}\$

\$725.834\$

\$0.001\$

\$"a"_6\$

\$402.249\$

\$0.001\$

\$"a"_{14}\$

\$731.688\$

\$0.001\$

\$"a"_8\$

\$417.668\$

\$0.001\$

\$"a"_{15}\$

\$857.961\$

\$0.001\$

\$"a"_8\$

\$438.919\$

\$0.001\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(54) 32-0) "- f ("a"_{10}," R(56) 32-0") = -47588897" (5)" "unitsml(kHz)"\$ [9]

Ref. [7], [13]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(119) 35-0 [no 1106]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{13}\$

\$645.617\$

\$0.002\$

\$"a"_2\$

\$75.277\$

\$0.002\$

\$"a"_{14}\$

\$697.723\$

\$0.002\$

\$"a"_3\$

\$148.701\$

\$0.002\$

\$"a"_{15}\$

\$747.389\$

\$0.003\$

\$"a"_4\$

\$290.376\$

\$0.003\$

\$"a"_{16}\$

\$771.197\$

\$0.003\$

\$"a"_5\$

\$349.310\$

\$0.002\$

\$"a"_{17}\$

\$804.769\$

\$0.003\$

\$"a"_6\$

\$371.567\$

\$0.002\$

\$"a"_{18}\$

\$827.641\$

\$0.003\$

\$"a"_9\$

\$474.953\$

\$0.004\$

\$"a"_{19}\$

\$912.125\$

\$0.002\$

\$"a"_{10}\$

\$530.727\$

\$0.002\$

\$"a"_{20}\$

\$930.053\$

\$0.002\$

\$"a"_{11}\$

\$548.787\$

\$0.002\$

\$"a"_{21}\$

\$949.288\$

\$0.003\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(119) 35-0) "- f ("a"_{10}," R(56) 32-0") = -36840163" (5)" "unitsml(kHz)"\$ [9]

Ref. [14], [15]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(86) 33-0 [no 1107]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$460.973\$

\$0.002\$

\$"a"_2\$

\$248.206\$

\$0.002\$

\$"a"_{10}\$

\$571.262\$

\$0.002\$

\$"a"_3\$

\$280.802\$

\$0.002\$

\$"a"_{11}\$

\$693.205\$

\$0.002\$

\$"a"_4\$

\$290.502\$

\$0.002\$

\$"a"_{12}\$

\$701.377\$

\$0.002\$

\$"a"_5\$

\$322.524\$

\$0.002\$

\$"a"_{13}\$

\$726.710\$

\$0.002\$

\$"a"_6\$

\$395.386\$

\$0.002\$

\$"a"_{14}\$

\$735.795\$

\$0.002\$

\$"a"_7\$

\$410.696\$

\$0.002\$

\$"a"_{15}\$

\$857.383\$

\$0.002\$

\$"a"_8\$

\$445.759\$

\$0.002\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(86) 33-0) "- f ("a"_{10}," R(56) 32-0") = -32190406" (5)" "unitsml(kHz)"\$ [9]

Ref. [15], [16]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(106) 34-0 [no 1108]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$467.984\$

\$0.002\$

\$"a"_2\$

\$236.870\$

\$0.002\$

\$"a"_{10}\$

\$570.799\$

\$0.002\$

\$"a"_3\$

\$276.941\$

\$0.002\$

\$"a"_{11}\$

\$687.539\$

\$0.002\$

\$"a"_4\$

\$293.861\$

\$0.002\$

\$"a"_{12}\$

\$698.663\$

\$0.002\$

\$"a"_5\$

\$333.350\$

\$0.002\$

\$"a"_{13}\$

\$728.261\$

\$0.002\$

\$"a"_6\$

\$387.636\$

\$0.002\$

\$"a"_{14}\$

\$740.185\$

\$0.002\$

\$"a"_7\$

\$404.635\$

\$0.002\$

\$"a"_{15}\$

\$856.675\$

\$0.002\$

\$"a"_8\$

\$451.175\$

\$0.002\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(106) 34-0) "- f ("a"_{10}," R(56) 32-0") = -30434763" (5)" "unitsml(kHz)"\$ [9]

Ref. [15], [16], [17]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(134) 36-0

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_9\$

\$462.603\$

\$0.009\$

\$"a"_2\$

\$212.287\$

\$0.007\$

\$"a"_{10}\$

\$484.342\$

\$0.007\$

\$"a"_3\$

\$269.634\$

\$0.022\$

\$"a"_{11}\$

\$674.703\$

\$0.009\$

\$"a"_4\$

\$300.097\$

\$0.011\$

\$"a"_{12}\$

\$691.951\$

\$0.008\$

\$"a"_5\$

\$356.801\$

\$0.008\$

\$"a"_{13}\$

\$732.405\$

\$0.008\$

\$"a"_6\$

\$369.644\$

\$0.008\$

\$"a"_{14}\$

\$750.434\$

\$0.009\$

\$"a"_7\$

\$391.684\$

\$0.009\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(106) 36-0) "- f ("a"_{10}," R(56) 32-0") = -17173682" (5)" "unitsml(kHz)"\$ [9]

Ref. [15], [16]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(83) 33-0 [no 1109]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{11}\$

\$507.533\$

\$0.004\$

\$"a"_2\$

\$48.789\$

\$0.004\$

\$"a"_{13}\$

\$620.065\$

\$0.004\$

\$"a"_3\$

\$95.839\$

\$0.008\$

\$"a"_{14}\$

\$659.930\$

\$0.004\$

\$"a"_4\$

\$281.343\$

\$0.010\$

\$"a"_{15}\$

\$728.070\$

\$0.004\$

\$"a"_5\$

\$330.230\$

\$0.004\$

\$"a"_{16}\$

\$750.131\$

\$0.004\$

\$"a"_6\$

\$338.673\$

\$0.004\$

\$"a"_{17}\$

\$774.805\$

\$0.004\$

\$"a"_7\$

\$385.830\$

\$0.004\$

\$"a"_{18}\$

\$796.125\$

\$0.004\$

\$"a"_8\$

\$444.365\$

\$0.006\$

\$"a"_{19}\$

\$890.709\$

\$0.005\$

\$"a"_9\$

\$460.503\$

\$0.004\$

\$"a"_{20}\$

\$904.712\$

\$0.005\$

\$"a"_{10}\$

\$493.533\$

\$0.006\$

\$"a"_{21}\$

\$920.475\$

\$0.004\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(83) 33-0) "- f ("a"_{10}," R(56) 32-0") = -15682075" (5)" "unitsml(kHz)"\$ [9]

Ref. [15], [16]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(56) 32-0 [no 1110]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$–571.542\$

\$0.0015\$

\$"a"_{10}\$

\$0\$

 — 

\$"a"_2\$

\$–311.844\$

\$0.0015\$

\$"a"_{11}\$

\$126.513\$

\$0.0015\$

\$"a"_5\$

\$–260.176\$

\$0.0015\$

\$"a"_{12}\$

\$131.212\$

\$0.0015\$

\$"a"_6\$

\$–170.064\$

\$0.0015\$

\$"a"_{13}\$

\$154.488\$

\$0.0015\$

\$"a"_7\$

\$–154.548\$

\$0.0015\$

\$"a"_{14}\$

\$160.665\$

\$0.0015\$

\$"a"_8\$

\$–131.916\$

\$0.0015\$

\$"a"_{15}\$

\$286.412\$

\$0.0015\$

\$"a"_9\$

\$–116.199\$

\$0.0015\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(53) 32-0 [no 1111]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{17}\$

\$762.623\$

\$0.006\$

\$"a"_2\$

\$37.530\$

\$0.006\$

\$"a"_{18}\$

\$788.431\$

\$0.008\$

\$"a"_3\$

\$73.060\$

\$0.007\$

\$"a"_{19}\$

\$879.110\$

\$0.006\$

\$"a"_4\$

\$271.326\$

\$0.016\$

\$"a"_{20}\$

\$892.953\$

\$0.009\$

\$"a"_{15}\$

\$712.935\$

\$0.012\$

\$"a"_{21}\$

\$910.093\$

\$0.006\$

\$"a"_{16}\$

\$739.274\$

\$0.008\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," P(53) 32-0) "- f ("a"_{10}," R(56) 32-0") = 2599708" (5)" "unitsml(kHz)"\$ [9]

Ref. [15], [16]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(142) 37-0 [no 1112]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_8\$

\$467369.1\$

\$2\$

\$"a"_2\$

\$201862.3\$

\$2\$

\$"a"_9\$

\$491394.9\$

\$2\$

\$"a"_3\$

\$266700.6\$

\$2\$

\$"a"_{10}\$

\$569318.6\$

\$2\$

\$"a"_4\$

\$302571.3\$

\$2\$

\$"a"_{11}\$

\$669162.1\$

\$2\$

\$"a"_5\$

\$361836.0\$

\$2\$

\$"a"_{12}\$

\$688963.6\$

\$2\$

\$"a"_6\$

\$366696.9\$

\$2\$

\$"a"_{13}\$

\$734239.7\$

\$2\$

\$"a"_7\$

\$386204.6\$

\$2\$

\$"a"_{14}\$

\$754848.4\$

\$2\$

\$"a"_{15}\$

\$854522.3\$

\$2\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_{21}," P(142) 37-0) "- f ("a"_{10}," R(56) 32-0") = 20123511.4" (5.0)" "unitsml(kHz)"\$ [25], [26]

Ref. [25], [26]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 P(121) 35-0 [no 1113]

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{11}\$

\$553248.7\$

\$2\$

\$"a"_2\$

\$78094.0\$

\$2\$

\$"a"_{12}\$

\$594812.8\$

\$2\$

\$"a"_3\$

\$154328.5\$

\$2\$

\$"a"_{13}\$

\$594812.8\$

\$2\$

\$"a"_4\$

\$291034.5\$

\$2\$

\$"a"_{14}\$

\$702090.3\$

\$2\$

\$"a"_5\$

\$351499.2\$

\$2\$

\$"a"_{15}\$

\$749153.7\$

\$2\$

\$"a"_6\$

\$374970.5\$

\$2\$

\$"a"_{16}\$

\$773429.2\$

\$2\$

\$"a"_7\$

\$433704.3\$

\$2\$

\$"a"_{17}\$

\$808079.0\$

\$2\$

\$"a"_8\$

\$456783.2\$

\$2\$

\$"a"_{18}\$

\$831410.9\$

\$2\$

\$"a"_9\$

\$476593.6\$

\$2\$

\$"a"_{19}\$

\$914362.6\$

\$2\$

\$"a"_{10}\$

\$534662.3\$

\$2\$

\$"a"_{20}\$

\$932813.8\$

\$2\$

\$"a"_{21}\$

\$952564.0\$

\$2\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_{21}," P(121) 35-0) "- f ("a"_{10}," R(56) 32-0") = 27539228.6" (5.0)" "unitsml(kHz)"\$ [25], [26]

Ref. [25], [26]

\$ii(lambda) ~~ 532 "unitsml(nm)"\$ 127I2 R(85) 33-0

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_n\$

[\$f ("a"_n) - f ("a"_1)\$]/\$"unitsml(MHz)"\$

\$u_c//"unitsml(MHz)"\$

\$"a"_1\$

\$0\$

 — 

\$"a"_{11}\$

\$510619.4\$

\$2\$

\$"a"_2\$

\$50732.5\$

\$2\$

\$"a"_{12}\$

\$582132.0\$

\$2\$

\$"a"_3\$

\$99742.3\$

\$2\$

\$"a"_{13}\$

\$621988.5\$

\$2\$

\$"a"_4\$

\$281946.2\$

\$2\$

\$"a"_{14}\$

\$662825.5\$

\$2\$

\$"a"_5\$

\$331678.7\$

\$2\$

\$"a"_{15}\$

\$729463.3\$

\$2\$

\$"a"_6\$

\$341087.6\$

\$2\$

\$"a"_{16}\$

\$751718.8\$

\$2\$

\$"a"_7\$

\$389099.9\$

\$2\$

\$"a"_{17}\$

\$777078.3\$

\$2\$

\$"a"_8\$

\$445205.3\$

\$2\$

\$"a"_{18}\$

\$798584.8\$

\$2\$

\$"a"_9\$

\$461608.4\$

\$2\$

\$"a"_{19}\$

\$892318.3\$

\$2\$

\$"a"_{10}\$

\$496293.9\$

\$2\$

\$"a"_{20}\$

\$906642.5\$

\$2\$

\$"a"_{21}\$

\$922692.5\$

\$2\$

Frequency referenced to

\$"a"_{10}\$, R(56) 32-0, 127I2: \$f = 563260223513 "unitsml(kHz)"\$ [9]
\$f ("a"_1," R(85) 33-0) "- f ("a"_{10}," R(56) 32-0") = 46496559.1" (5.0)" "unitsml(kHz)"\$ [25], [27]

Ref. [25], [27]

References

  • [1], Diddams S. A., Jones D. J., Ye J., Cundiff S. T., Hall J. L., Ranka J. K., Windeler R. S., Holzwarth R., Udem T., Hänsch T. W., Direct Link between Microwave and Optical Frequencies with a \$300 "unitsml(THz)"\$ Femtosecond Laser Comb, Phys. Rev. Lett., 2000, 84, 5102-5105.

  • [2], Ye J., Ma Long Sheng, Hall J. L., Molecular Iodine Clock, Phys. Rev. Lett., 2001, 87, 270801/1-4.

  • [3], Sugiyama K., Onae A., Hong F.-L., Inaba H., Slyusarev S. N., Ikegami T., Ishikawa J., Minoshima K., Matsumoto H., Knight J. C., Wadsworth W. J., Russel P. St. J., Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST, 6th Symposium on Frequency Standards and Metrology, Ed. Gill P, World Scientific (Singapore), 2002, 427-434.

  • [4], Holzwarth R., Nevsky A. Yu., Zimmermann M., Udem Th., Hänsch T. W., von Zanthier J., Walther H., Knight J. C., Wadsworth W. J., Russel P. St. R., Skvortsov M. N., Bagayev S. N., Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer, Appl. Phys. B, 2001, 73, 269-271.

  • [5], Nevsky A. Yu., Holzwarth R., Reichert J., Udem Th., Hänsch T. W., von Zanthier J., Walther H., Schnatz H., Riehle F., Pokasov P. V., Skvortsov M. N., Bagayev S. N., Frequency comparison and absolute frequency measurement of I2-stabilized lasers at \$532 "unitsml(nm)"\$, Optics Commun., 2001, 192, 263-272.

  • [6], Gillespie L. J., Fraser L. A. D., J. Am. Chem. Soc., 1936, 58, 2260-2263.

  • [7], Ye J., Robertsson L., Picard S., Ma L.-S., Hall J. L., Absolute Frequency Atlas of Molecular I2 Lines at \$532 "unitsml(nm)"\$, IEEE. Trans. Intrum. Meas., 1999, 48, 544-549.

  • [8], Zhang Y., Ishikawa J., Hong F.-L., Accurate frequency atlas of molecular iodine near \$532 "unitsml(nm)"\$ measured by an optical frequency comb generator, Opt. Commun., 2001, 200, 209-215.

  • [9], Recommendation CCL3 (BIPM Com. Cons. Long., 10th Meeting, 2001) adopted by the Comité International des Poids et Mesures at its 91th Meeting as Recommendation 1 (CI-2002).

  • [10], Hong F.-L., Zhang Y., Ishikawa J., Onae A., Matsumoto H., Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near \$532 "unitsml(nm)"\$, J. Opt. Soc. Am. B., 2001, 19, 946-953.

  • [11], Hong F.-L., Ishikawa J., Onae A., Matsumoto H., Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2, J. Opt. Soc. Am. B., 2001, 18, 1416-1422.

  • [12], Hong F.-L., Ishikawa J., Hyperfine structures of the R(122) 35-0 and P(84) 33-0 transitions of 127I2 near \$532 "unitsml(nm)"\$, Opt. Commun., 2000, 183, 101-108.

  • [13], Macfarlane G. M., Barwood G. P., Rowley W. R. C., Gill P., Interferometric Frequency Measurements of an Iodine Stabilized Nd:YAG laser, IEEE. Trans. Intrum. Meas., 1999, 48, 600-603.

  • [14], Arie A., Byer R. L., The hyperfine structure of the 127I2 P(119) 35-0 transition, Opt. Commun., 1994, 111, 253-258 and Arie A., Byer R. L., Erratum, Opt. Commun., 1996, 127, 382.

  • [15], Eickhoff M. L., Thesis, University of Colorado, 1994.

  • [16], Arie A., Byer R. L., Laser heterodyne spectroscopy of 127I2 hyperfine structure near \$532 "unitsml(nm)"\$, J. Opt. Soc. Am., B, 1993, 10, 1990-1997, and A. Arie, R. L. Byer, Errata, J. Opt. Soc. Am. B, 1994, 11, 866.

  • [17], Eickhoff M. L. and Hall J. L., Optical Frequency Standard at \$532 "unitsml(nm)"\$, IEEE Trans. Instrum. Meas., 1995, 44, 155-158.

  • [18], Jungner P., Eickhoff M. L., Swartz S. D., Ye Jun, Hall J. L., Waltman S., Stability and absolute frequency of molecular iodine transitions near \$532 "unitsml(nm)"\$, Laser Frequency Stabilization and Noise Reduction, SPIE, 1995, 2378, 22-34.

  • [19], Jungner P. A., Swartz S. D., Eickhoff M., Ye J., Hall J. L., Waltman S., Absolute Frequency of the Molecular Iodine Transitions R(56)32-0 Near \$532 "unitsml(nm)"\$, IEEE trans. Instrum. Meas., 1995, 44, 151-154.

  • [20], Robertsson L., Ma L.-S., Picard S., Improved Iodine-Stabilized Nd:YAG Lasers, Laser Frequency Stabilization, Standards, Measurement, and Applications, Proceedings of SPIE, 2000, 4269, 268-271.

  • [21], Picard S., Robertsson L., Ma L.-S., Nyholm K., Merimaa M., Ahola T. E., Balling P., Křen P., Wallerand J.-P., International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the MIKES, the BNM-INM and the CMI, May 2001, Appl. Opt., 2003, 42, 1019-1028 and CCL/MePWG/2001-07.BIPM.

  • [22], Hong F.-L., Ye J., Ma L.-S., Picard S., Bordé Ch. J., Hall J. L., Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy, J. Opt. Soc. Am. B, 2001, 18, 379-387.

  • [23], Quinn T. J., Practical realization of the definition of the metre (1997), Metrologia, 36, 1999, 211-244.

  • [24], Procès-Verbaux des Séances du Comité International des Poids et Mesures, 96th meeting (2007) 2008, Recommendation 1 (CI-2007): Revision of the Mise en pratique list of recommended radiations. p. 185 (see http://www.bipm.org/utils/en/pdf/CIPM2007-EN.pdf#page=77).

  • [25], Report of the 13th meeting (13 – 14 September 2007) of the Consultative Committee for Length (CCL) to the International Committee for Weights and Measures p. 34 -35 (see e.g. http://www.bipm.org/utils/common/pdf/CCL13.pdf#page=34).

  • [26], Hong F.-L., Zhang Y., Ishikawa J., Onae A., Matsumoto H., Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near \$532 "unitsml(nm)"\$, Opt. Commun. 2002, 212, 89–95.

  • [27], Hong F.-L., Diddams S., Guo R., Bi Z.-Y., Onae A., Inaba H., Ishikawa J., Okumura K., Katsuragi D., Hirata J., Shimizu T., Kurosu T., Koga Y., Matsumoto H., Frequency measurements and hyperfine structure of the R(85)33– 0 transition of molecular iodine with a femtosecond optical comb, J. Opt. Soc. Am. B, 2004, 21, 88-95.


1. All transitions in I2 refer to the \$"B"^3Pi" "0_u^+ - X^1 Sigma_g^+\$ system.
2. For the specification of operating conditions, such as temperature, modulation width and laser power, the symbols \$pm\$ refer to a tolerance, not an uncertainty.
3. For the iodine cold-finger temperature to iodine pressure conversion the formula derived by Gillespie and Fraser [6] has been used.