Skip to content
Python implementation of SSC-OMP and SSC-MP
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

Python implementation of SSC-OMP and SSC-MP

Sparse Subspace Clustering-Orthogonal Matching Pursuit (SSC-OMP) and SSC-Matching Pursuit (SSC-MP) are sparsity-based subspace clustering algorithms (see ref. 1, 2, 3 for SSC-OMP and ref. 3 for SSC-MP for more information).


>> python3

to run a simple face clustering experiment.

Tested with Python 3.4.2, numpy 1.11.0, scikit-learn 0.18.1.


  1. E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature selection for subspace clustering,” Journal of Mach. Learn. Research, vol. 14, pp. 2487–2517, 2013.
  2. C. You, D Robinson, and R. Vidal, “Scalable sparse subspace clustering by orthogonal matching pursuit,” in IEEE Conf. on Comp. Vision and Pattern Recogn., 2016, pp. 3918– 3927.
  3. M. Tschannen and H. Bölcskei, "Noisy Subspace Clustering via Matching Pursuits", IEEE Trans. on Inf. Theory, Vol. 64, No. 6, 2018, pp. 4081-4104.
You can’t perform that action at this time.