-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtuning_spaces_default.R
196 lines (178 loc) · 4.76 KB
/
tuning_spaces_default.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#' @title Default Tuning Spaces
#'
#' @name mlr_tuning_spaces_default
#'
#' @description
#' Tuning spaces from the `r cite_bib("bischl_2021")` article.
#'
#' @source
#' `r format_bib("bischl_2021")`
#'
#' @aliases
#' mlr_tuning_spaces_classif.glmnet.default
#' mlr_tuning_spaces_classif.kknn.default
#' mlr_tuning_spaces_classif.ranger.default
#' mlr_tuning_spaces_classif.rpart.default
#' mlr_tuning_spaces_classif.svm.default
#' mlr_tuning_spaces_classif.xgboost.default
#' mlr_tuning_spaces_regr.glmnet.default
#' mlr_tuning_spaces_regr.kknn.default
#' mlr_tuning_spaces_regr.ranger.default
#' mlr_tuning_spaces_regr.rpart.default
#' mlr_tuning_spaces_regr.svm.default
#' mlr_tuning_spaces_regr.xgboost.default
#'
#' @section glmnet tuning space:
#' `r rd_info(lts("classif.glmnet.default"))`
#'
#' @section kknn tuning space:
#' `r rd_info(lts("classif.kknn.default"))`
#'
#' @section ranger tuning space:
#' `r rd_info(lts("classif.ranger.default"))`
#'
#' @section rpart tuning space:
#' `r rd_info(lts("classif.rpart.default"))`
#'
#' @section svm tuning space:
#' `r rd_info(lts("classif.svm.default"))`
#'
#' @section xgboost tuning space:
#' `r rd_info(lts("classif.xgboost.default"))`
#'
#' @include mlr_tuning_spaces.R
NULL
# glmnet
vals = list(
s = to_tune(1e-4, 1e4, logscale = TRUE),
alpha = to_tune(0, 1)
)
add_tuning_space(
id = "classif.glmnet.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.glmnet",
package = "mlr3learners",
label = "Classification GLM with Default"
)
add_tuning_space(
id = "regr.glmnet.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.glmnet",
package = "mlr3learners",
label = "Regression GLM with Default"
)
# kknn
vals = list(
k = to_tune(1, 50, logscale = TRUE),
distance = to_tune(1, 5),
kernel = to_tune(c("rectangular", "optimal", "epanechnikov", "biweight", "triweight", "cos", "inv", "gaussian", "rank"))
)
add_tuning_space(
id = "classif.kknn.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.kknn",
package = "mlr3learners",
label = "Classification KKNN with Default"
)
add_tuning_space(
id = "regr.kknn.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.kknn",
package = "mlr3learners",
label = "Regression KKNN with Default"
)
# ranger
vals = list(
mtry.ratio = to_tune(0, 1),
replace = to_tune(p_lgl()),
sample.fraction = to_tune(1e-1, 1),
num.trees = to_tune(1, 2000)
)
add_tuning_space(
id = "classif.ranger.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.ranger",
label = "Classification Ranger with Default"
)
add_tuning_space(
id = "regr.ranger.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.ranger",
label = "Regression Ranger with Default"
)
# rpart
vals = list(
minsplit = to_tune(2, 128, logscale = TRUE),
minbucket = to_tune(1, 64, logscale = TRUE),
cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)
add_tuning_space(
id = "classif.rpart.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.rpart",
label = "Classification Rpart with Default"
)
add_tuning_space(
id = "regr.rpart.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.rpart",
label = "Regression Rpart with Default"
)
# svm
vals = list(
cost = to_tune(1e-4, 1e4, logscale = TRUE),
kernel = to_tune(c("polynomial", "radial", "sigmoid", "linear")),
degree = to_tune(2, 5),
gamma = to_tune(1e-4, 1e4, logscale = TRUE)
)
add_tuning_space(
id = "classif.svm.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.svm",
package = "mlr3learners",
label = "Classification SVM with Default"
)
add_tuning_space(
id = "regr.svm.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.svm",
package = "mlr3learners",
label = "Regression SVM with Default"
)
# xgboost
vals = list(
eta = to_tune(1e-4, 1, logscale = TRUE),
nrounds = to_tune(1, 5000),
max_depth = to_tune(1, 20),
colsample_bytree = to_tune(1e-1, 1),
colsample_bylevel = to_tune(1e-1, 1),
lambda = to_tune(1e-3, 1e3, logscale = TRUE),
alpha = to_tune(1e-3, 1e3, logscale = TRUE),
subsample = to_tune(1e-1, 1)
)
add_tuning_space(
id = "classif.xgboost.default",
values = vals,
tags = c("default", "classification"),
learner = "classif.xgboost",
package = "mlr3learners",
label = "Classification XGBoost with Default"
)
add_tuning_space(
id = "regr.xgboost.default",
values = vals,
tags = c("default", "regression"),
learner = "regr.xgboost",
package = "mlr3learners",
label = "Regression XGBoost with Default"
)