Skip to content
2D graphics rendering on the GPU in rust using path tessellation.
Rust
Branch: master
Clone or download
Latest commit 694761f Jul 28, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
algorithms Version 0.14.0 Jul 22, 2019
assets Add a sample path to use with the cli app. Oct 28, 2017
bench Simplify the iterators. Feb 10, 2019
cli Update to euclid 0.20. Jul 21, 2019
examples Port the gfx_advanced example to wgpu. May 13, 2019
extra
geom Update to euclid 0.20. Jul 21, 2019
path Version 0.14.0 Jul 22, 2019
src
svg Version 0.14.0 Jul 22, 2019
tess2 Version 0.14.0 Jul 22, 2019
tessellation Version 0.14.1. Jul 28, 2019
wasm_test Simplify the iterators. Feb 10, 2019
.gitignore Add Cargo.lock to the repository. Nov 5, 2017
.gitmodules Massive amount of stuff Sep 5, 2014
.travis.yml Add the wasm test to the CI. Aug 5, 2018
CHANGELOG.md Version 0.11.0. Jul 4, 2018
CONTRIBUTING.md Update the license terms to allow MPL2 in the future. Nov 29, 2017
Cargo.lock Version 0.14.1. Jul 28, 2019
Cargo.toml Version 0.14.1. Jul 28, 2019
LICENSE-APACHE Moved the license to MIT/Apache-2.0 Feb 25, 2016
LICENSE-MIT Moved the license to MIT/Apache-2.0 Feb 25, 2016
README.md Move to the 2018 edition. Feb 26, 2019
all.sh Rename lyon_bezier into lyon_geom and cleanup the dependency graph. Nov 25, 2017

README.md

Lyon

A path tessellation library written in rust for GPU-based 2D graphics rendering.

Project logo

crates.io Travis Build Status documentation Gitter Chat

Motivation

For now the goal is to provide efficient SVG-compliant path tessellation tools to help with rendering vector graphics on the GPU. For now think of this library as a way to turn complex paths into triangles for use in your own rendering engine.

The intent is for this library to be useful in projects like Servo and games.

Example

use lyon::math::point;
use lyon::path::Path;
use lyon::path::builder::*;
use lyon::tessellation::*;

fn main() {
    // Build a Path.
    let mut builder = Path::builder();
    builder.move_to(point(0.0, 0.0));
    builder.line_to(point(1.0, 0.0));
    builder.quadratic_bezier_to(point(2.0, 0.0), point(2.0, 1.0));
    builder.cubic_bezier_to(point(1.0, 1.0), point(0.0, 1.0), point(0.0, 0.0));
    builder.close();
    let path = builder.build();

    // Let's use our own custom vertex type instead of the default one.
    #[derive(Copy, Clone, Debug)]
    struct MyVertex { position: [f32; 2], normal: [f32; 2] };

    // Will contain the result of the tessellation.
    let mut geometry: VertexBuffers<MyVertex, u16> = VertexBuffers::new();

    let mut tessellator = FillTessellator::new();

    {
        // Compute the tessellation.
        tessellator.tessellate_path(
            &path,
            &FillOptions::default(),
            &mut BuffersBuilder::new(&mut geometry, |vertex : FillVertex| {
                MyVertex {
                    position: vertex.position.to_array(),
                    normal: vertex.normal.to_array(),
                }
            }),
        ).unwrap();
    }

    // The tessellated geometry is ready to be uploaded to the GPU.
    println!(" -- {} vertices {} indices",
        geometry.vertices.len(),
        geometry.indices.len()
    );
}

FAQ

In a nutshell, what is a tessellator?

Tessellators such as the ones provided by lyon take complex shapes as input and generate geometry made of triangles that can be easily consumed by graphics APIs such as OpenGL, Vulkan or D3D.

How do I render an SVG file with lyon?

Lyon is not an SVG renderer. For now lyon mainly provides primitives to tessellate complex path fills and strokes in a way that is convenient to use with GPU APIs such as gfx-rs, glium, OpenGL, D3D, etc. How the tessellated geometry is rendered is completely up to the user of this crate.

How do I render the output of the tessellators?

Although the format of the output of the tessellators is customizable, the algorithms are designed to generate a vertex and an index buffer. See the lyon::tessellation documentation for more details.

Is anti-aliasing supported?

There is currently no built-in support for anti-aliasing in the tessellators. Anti-aliasing can still be achieved by users of this crate using techniques commonly employed in video games (msaa, taa, fxaa, etc.).

What is left to do before lyon 1.0?

See the 1.0 milestone on the github repository.

I need help!

Don't hesitate to file an issue, ask questions on gitter, or contact @nical by e-mail.

How can I help?

See CONTRIBUTING.md.

License

Licensed under either of

at your option.

Dual MIT/Apache2 is strictly more permissive

Contribution

There is useful information for contributors in the contribution guidelines.

You can’t perform that action at this time.