This package performs model-free reinforcement learning in R.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
JOSS
R * Bug fix Apr 7, 2018
data
man
tests
vignettes
.Rbuildignore
.gitignore
.travis.yml
DESCRIPTION
LICENSE
NAMESPACE
NEWS.md
README.Rmd
README.md
ReinforcementLearning.Rproj
ReinforcementLearning.pdf
cran-comments.md

README.md

Reinforcement Learning

Build Status CRAN_Status_Badge

ReinforcementLearning performs model-free reinforcement learning in R. This implementation enables the learning of an optimal policy based on sample sequences consisting of states, actions and rewards. In addition, it supplies multiple predefined reinforcement learning algorithms, such as experience replay.

Overview

The most important functions of ReinforcementLearning are:

  • Learning an optimal policy from a fixed set of a priori known transition samples
  • Predefined learning rules and action selection modes
  • A highly customizable framework for model-free reinforcement learning tasks

Installation

You can easily install the latest version of ReinforcementLearning with

# Recommended option: download and install latest version from CRAN
install.packages("ReinforcementLearning")

# Alternatively, install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("nproellochs/ReinforcementLearning")

Usage

This section shows the basic functionality of how to perform reinforcement learning. First, load the corresponding package ReinforcementLearning.

library(ReinforcementLearning)

The following example shows how to learn a reinforcement learning agent using input data in the form of sample sequences consisting of states, actions and rewards. The result of the learning process is a state-action table and an optimal policy that defines the best possible action in each state.

# Generate sample experience in the form of state transition tuples
data <- sampleGridSequence(N = 1000)
head(data)
#>   State Action Reward NextState
#> 1    s4   left     -1        s4
#> 2    s2  right     -1        s3
#> 3    s2  right     -1        s3
#> 4    s3   left     -1        s2
#> 5    s4     up     -1        s4
#> 6    s1   down     -1        s2

# Define reinforcement learning parameters
control <- list(alpha = 0.1, gamma = 0.1, epsilon = 0.1)

# Perform reinforcement learning
model <- ReinforcementLearning(data, s = "State", a = "Action", r = "Reward", 
                               s_new = "NextState", control = control)

# Print result
print(model)
#> State-Action function Q
#>          right        up        down       left
#> s1 -1.09619438 -1.098533 -1.00183072 -1.0978962
#> s2 -0.01980279 -1.097758 -1.00252228 -1.0037977
#> s3 -0.02335524  9.884394 -0.01722548 -0.9985081
#> s4 -1.09616040 -1.106392 -1.10548631 -1.1059655
#> 
#> Policy
#>      s1      s2      s3      s4 
#>  "down" "right"    "up" "right" 
#> 
#> Reward (last iteration)
#> [1] -263

License

ReinforcementLearning is released under the MIT License

Copyright (c) 2018 Nicolas Pröllochs & Stefan Feuerriegel