Skip to content
The fundamental package for scientific computing with Python.
Branch: master
Clone or download
mattip Merge pull request #8662 from eric-wieser/ufunc-outer-subclass
ENH: preserve subclasses in ufunc.outer
Latest commit 31e71d7 Apr 19, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.circleci BUILD: pin sphinx to before-2.0.0 Mar 28, 2019
.github DOC: add a Code of Conduct document. Sep 1, 2018
benchmarks Add benchmark for sorting random array. Apr 8, 2019
branding/icons add .gitattributes and fix line endings Oct 31, 2010
doc Merge pull request #10741 from eric-wieser/as_integer_ratio Apr 19, 2019
numpy
tools TST: use POWER8 OpenBLAS for CI Apr 5, 2019
.appveyor.yml MAINT: Prepare master for 1.17.0 development. Dec 8, 2018
.codecov.yml
.coveragerc TST: Add `.coveragerc` file for coverage testing. Apr 4, 2018
.ctags.d DEV: add ctags option file Dec 11, 2018
.gitattributes
.gitignore ENH: preliminary numeric timsort Jan 21, 2019
.gitmodules Add Numpydoc as a git submodule Jul 25, 2013
.lgtm.yml Fix lgtm.com C/C++ build Dec 10, 2018
.mailmap DOC: Post NumPy 1.16.2 release update. Feb 27, 2019
.travis.yml TST: use POWER8 OpenBLAS for CI Apr 5, 2019
INSTALL.rst.txt DOC: update build info in INSTALL.rst.txt Jan 7, 2019
LICENSE.txt DOC: update 2018 -> 2019 Jan 1, 2019
MANIFEST.in BUILD: remove unused file Apr 13, 2019
README.md DOC: link to devdocs in README Feb 26, 2019
THANKS.txt
azure-pipelines.yml TST: fail Azure CI if test failures Apr 2, 2019
pavement.py MAINT: Prepare master for 1.17.0 development. Dec 8, 2018
pytest.ini
runtests.py DEV: cleanup imports and some assignments (from LGTM) Mar 17, 2019
setup.py Add project_urls to setup Apr 12, 2019
shippable.yml TST: use OpenBLAS for ARMv8 CI Apr 5, 2019
site.cfg.example Merge pull request #12925 from eric-wieser/distutils-shlex-split Feb 25, 2019
tox.ini

README.md

NumPy

Travis AppVeyor Azure codecov

NumPy is the fundamental package needed for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

  • NumPy versions ≥ 1.15 require pytest
  • NumPy versions < 1.15 require nose

Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Powered by NumFOCUS

You can’t perform that action at this time.