Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Compilers used in the project #3

Open
sskras opened this issue Feb 5, 2021 · 3 comments
Open

Compilers used in the project #3

sskras opened this issue Feb 5, 2021 · 3 comments

Comments

@sskras
Copy link

sskras commented Feb 5, 2021

@lundman wrote in #2:

the cmake thing compiles everything as clang, which is not right - it is supposed to do driver.c (plus three other files) and then link, using visual studio compiler.

Ummm. Could you give more details about CLang vs MSVC compilers usage in this project?

I guess it would be very nice to compile it with no MSVC set up at all.

@lundman
Copy link

lundman commented Feb 5, 2021

https://github.com/openzfsonwindows/openzfs/blob/windows/module/os/windows/README.md

Yeah, it is a hassle - 99% of it is compiled with clang, but, there is no /kernel flag for clang (yet), so we use MSVC++ to compile driver.c then link it. Technically, probably just linking is enough but ah well. So you need cl.exe and ah whatever the linker is called.

@sskras
Copy link
Author

sskras commented Feb 5, 2021

Nice, thanks.

there is no /kernel flag for clang (yet), so we use MSVC++ to compile driver.c then link it

If @reactos can do this by using clang, I guess it's still doable (configurable):
https://reactos.org/wiki/Building_ReactOS#Windows_or_ReactOS#:~:text=clang

OTOH, it would be nice if someone ported this to gcc (MinGW-w64) too. It seemingly can compile drivers too:
https://myworks2012.wordpress.com/2014/05/26/how-to-compile-windows-x64-driver-using-mingw-w64-gcc/

@lundman
Copy link

lundman commented Feb 5, 2021

I suspect it can be made to work with just clang - I've just not had the time yet, since there is so much to do. But the lines with --entry,DriverEntry@8 (and the others) is probably what is needed so it has a load address. Feel free to experiment though!

lundman pushed a commit that referenced this issue Jun 29, 2021
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes openzfs#11389
lundman pushed a commit that referenced this issue Feb 16, 2022
`zpool_do_import()` passes `argv[0]`, (optionally) `argv[1]`, and
`pool_specified` to `import_pools()`.  If `pool_specified==FALSE`, the
`argv[]` arguments are not used.  However, these values may be off the
end of the `argv[]` array, so loading them could dereference unmapped
memory.  This error is reported by the asan build:

```
=================================================================
==6003==ERROR: AddressSanitizer: heap-buffer-overflow
READ of size 8 at 0x6030000004a8 thread T0
    #0 0x562a078b50eb in zpool_do_import zpool_main.c:3796
    #1 0x562a078858c5 in main zpool_main.c:10709
    #2 0x7f5115231bf6 in __libc_start_main
    #3 0x562a07885eb9 in _start

0x6030000004a8 is located 0 bytes to the right of 24-byte region
allocated by thread T0 here:
    #0 0x7f5116ac6b40 in __interceptor_malloc
    #1 0x562a07885770 in main zpool_main.c:10699
    #2 0x7f5115231bf6 in __libc_start_main
```

This commit passes NULL for these arguments if they are off the end
of the `argv[]` array.

Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes openzfs#12339
lundman pushed a commit that referenced this issue Mar 3, 2023
Under certain loads, the following panic is hit:

    panic: page fault
    KDB: stack backtrace:
    #0 0xffffffff805db025 at kdb_backtrace+0x65
    #1 0xffffffff8058e86f at vpanic+0x17f
    #2 0xffffffff8058e6e3 at panic+0x43
    #3 0xffffffff808adc15 at trap_fatal+0x385
    #4 0xffffffff808adc6f at trap_pfault+0x4f
    #5 0xffffffff80886da8 at calltrap+0x8
    #6 0xffffffff80669186 at vgonel+0x186
    #7 0xffffffff80669841 at vgone+0x31
    #8 0xffffffff8065806d at vfs_hash_insert+0x26d
    #9 0xffffffff81a39069 at sfs_vgetx+0x149
    #10 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
    #11 0xffffffff8065a28c at lookup+0x45c
    #12 0xffffffff806594b9 at namei+0x259
    #13 0xffffffff80676a33 at kern_statat+0xf3
    #14 0xffffffff8067712f at sys_fstatat+0x2f
    #15 0xffffffff808ae50c at amd64_syscall+0x10c
    #16 0xffffffff808876bb at fast_syscall_common+0xf8

The page fault occurs because vgonel() will call VOP_CLOSE() for active
vnodes. For this reason, define vop_close for zfsctl_ops_snapshot. While
here, define vop_open for consistency.

After adding the necessary vop, the bug progresses to the following
panic:

    panic: VERIFY3(vrecycle(vp) == 1) failed (0 == 1)
    cpuid = 17
    KDB: stack backtrace:
    #0 0xffffffff805e29c5 at kdb_backtrace+0x65
    #1 0xffffffff8059620f at vpanic+0x17f
    #2 0xffffffff81a27f4a at spl_panic+0x3a
    #3 0xffffffff81a3a4d0 at zfsctl_snapshot_inactive+0x40
    #4 0xffffffff8066fdee at vinactivef+0xde
    #5 0xffffffff80670b8a at vgonel+0x1ea
    #6 0xffffffff806711e1 at vgone+0x31
    #7 0xffffffff8065fa0d at vfs_hash_insert+0x26d
    #8 0xffffffff81a39069 at sfs_vgetx+0x149
    #9 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
    #10 0xffffffff80661c2c at lookup+0x45c
    #11 0xffffffff80660e59 at namei+0x259
    #12 0xffffffff8067e3d3 at kern_statat+0xf3
    #13 0xffffffff8067eacf at sys_fstatat+0x2f
    #14 0xffffffff808b5ecc at amd64_syscall+0x10c
    #15 0xffffffff8088f07b at fast_syscall_common+0xf8

This is caused by a race condition that can occur when allocating a new
vnode and adding that vnode to the vfs hash. If the newly created vnode
loses the race when being inserted into the vfs hash, it will not be
recycled as its usecount is greater than zero, hitting the above
assertion.

Fix this by dropping the assertion.

FreeBSD-issue: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=252700
Reviewed-by: Andriy Gapon <avg@FreeBSD.org>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Reviewed-by: Alek Pinchuk <apinchuk@axcient.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Rob Wing <rob.wing@klarasystems.com>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Submitted-by: Klara, Inc.
Sponsored-by: rsync.net
Closes openzfs#14501
lundman pushed a commit that referenced this issue Mar 3, 2023
Under certain loads, the following panic is hit:

    panic: page fault
    KDB: stack backtrace:
    #0 0xffffffff805db025 at kdb_backtrace+0x65
    #1 0xffffffff8058e86f at vpanic+0x17f
    #2 0xffffffff8058e6e3 at panic+0x43
    #3 0xffffffff808adc15 at trap_fatal+0x385
    #4 0xffffffff808adc6f at trap_pfault+0x4f
    #5 0xffffffff80886da8 at calltrap+0x8
    #6 0xffffffff80669186 at vgonel+0x186
    #7 0xffffffff80669841 at vgone+0x31
    #8 0xffffffff8065806d at vfs_hash_insert+0x26d
    #9 0xffffffff81a39069 at sfs_vgetx+0x149
    #10 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
    #11 0xffffffff8065a28c at lookup+0x45c
    #12 0xffffffff806594b9 at namei+0x259
    #13 0xffffffff80676a33 at kern_statat+0xf3
    #14 0xffffffff8067712f at sys_fstatat+0x2f
    #15 0xffffffff808ae50c at amd64_syscall+0x10c
    #16 0xffffffff808876bb at fast_syscall_common+0xf8

The page fault occurs because vgonel() will call VOP_CLOSE() for active
vnodes. For this reason, define vop_close for zfsctl_ops_snapshot. While
here, define vop_open for consistency.

After adding the necessary vop, the bug progresses to the following
panic:

    panic: VERIFY3(vrecycle(vp) == 1) failed (0 == 1)
    cpuid = 17
    KDB: stack backtrace:
    #0 0xffffffff805e29c5 at kdb_backtrace+0x65
    #1 0xffffffff8059620f at vpanic+0x17f
    #2 0xffffffff81a27f4a at spl_panic+0x3a
    #3 0xffffffff81a3a4d0 at zfsctl_snapshot_inactive+0x40
    #4 0xffffffff8066fdee at vinactivef+0xde
    #5 0xffffffff80670b8a at vgonel+0x1ea
    #6 0xffffffff806711e1 at vgone+0x31
    #7 0xffffffff8065fa0d at vfs_hash_insert+0x26d
    #8 0xffffffff81a39069 at sfs_vgetx+0x149
    #9 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
    #10 0xffffffff80661c2c at lookup+0x45c
    #11 0xffffffff80660e59 at namei+0x259
    #12 0xffffffff8067e3d3 at kern_statat+0xf3
    #13 0xffffffff8067eacf at sys_fstatat+0x2f
    #14 0xffffffff808b5ecc at amd64_syscall+0x10c
    #15 0xffffffff8088f07b at fast_syscall_common+0xf8

This is caused by a race condition that can occur when allocating a new
vnode and adding that vnode to the vfs hash. If the newly created vnode
loses the race when being inserted into the vfs hash, it will not be
recycled as its usecount is greater than zero, hitting the above
assertion.

Fix this by dropping the assertion.

FreeBSD-issue: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=252700
Reviewed-by: Andriy Gapon <avg@FreeBSD.org>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Reviewed-by: Alek Pinchuk <apinchuk@axcient.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Rob Wing <rob.wing@klarasystems.com>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Submitted-by: Klara, Inc.
Sponsored-by: rsync.net
Closes openzfs#14501
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants