Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

Robust Inference via Generative Classifiers for Handling Noisy Labels

This project is for the paper "Robust Inference via Generative Classifiers for Handling Noisy Labels ". Codes will be updated.

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries Pytorch package to be installed:

Datasets

Training networks with noisy labels

1. Generate noisy labels:

# dataset: CIFAR-10, noise type: uniform, noise fraction: 60%
python generate_labels.py --dataset cifar10 --noise_type uniform --noise_fraction 60

2. Train networks

# model: DenseNet, dataset: CIFAR-10, noise type: uniform, noise fraction: 60%, gpu 0
python train.py --net_type densenet --dataset cifar10 --noise_type uniform --noise_fraction 60 --gpu 0

Performance evaluation

# model: DenseNet, dataset: CIFAR-10, noise type: uniform, noise fraction: 60%
python inference.py --net_type densenet --dataset cifar10 --noise_type uniform --noise_fraction 60 --gpu 0

About

Description Code for the paper "Robust Inference via Generative Classifiers for Handling Noisy Labels".

Resources

Releases

No releases published

Packages

No packages published

Languages