Skip to content

Latest commit

 

History

History
1248 lines (1056 loc) · 49.2 KB

README.adoc

File metadata and controls

1248 lines (1056 loc) · 49.2 KB

bmt: Bean Managed Transactions with JPA and JTA

The bmt quickstart demonstrates Bean-Managed Transactions (BMT), showing how to manually manage transaction demarcation while accessing JPA entities.

What is it?

The bmt quickstart demonstrates how to manually manage transaction demarcation while accessing JPA entities in WildFly Application Server.

On occasion, the application developer requires finer grained control over the lifecycle of JTA transactions and JPA Entity Managers than the defaults provided by the Jakarta EE container. This example shows how the developer can override these defaults and take control of aspects of the lifecycle of JPA and transactions.

When you run this example, you are presented with a Use bean managed Entity Managers checkbox.

  • If you check the checkbox, it shows the developer responsibilities when injecting an Entity Manager into a managed (stateless) bean.

  • If you uncheck the checkbox, shows the developer responsibilities when using JPA and transactions with an unmanaged component.

This example shows how to transactionally insert key value pairs into the database and demonstrates the requirements on the developer with respect to the JPA Entity Manager.

Considerations for Use in a Production Environment

H2 Database

This quickstart uses the H2 database included with WildFly Application Server 31. It is a lightweight, relational example datasource that is used for examples only. It is not robust or scalable, is not supported, and should NOT be used in a production environment.

Datasource Configuration File

This quickstart uses a *-ds.xml datasource configuration file for convenience and ease of database configuration. These files are deprecated in WildFly and should not be used in a production environment. Instead, you should configure the datasource using the Management CLI or Management Console. Datasource configuration is documented in the Configuration Guide.

Performance and Scalability

A Jakarta EE container is designed with robustness in mind, so you should carefully analyze the scalabiltiy, concurrency, and performance needs of your application before taking advantage of these techniques in your own applications.

System Requirements

The application this project produces is designed to be run on WildFly Application Server 31 or later.

All you need to build this project is Java 11.0 (Java SDK 11) or later and Maven 3.6.0 or later. See Configure Maven to Build and Deploy the Quickstarts to make sure you are configured correctly for testing the quickstarts.

Use of the WILDFLY_HOME and QUICKSTART_HOME Variables

In the following instructions, replace WILDFLY_HOME with the actual path to your WildFly installation. The installation path is described in detail here: Use of WILDFLY_HOME and JBOSS_HOME Variables.

When you see the replaceable variable QUICKSTART_HOME, replace it with the path to the root directory of all of the quickstarts.

Start the WildFly Standalone Server

  1. Open a terminal and navigate to the root of the WildFly directory.

  2. Start the WildFly server with the default profile by typing the following command.

    $ WILDFLY_HOME/bin/standalone.sh 
    Note
    For Windows, use the WILDFLY_HOME\bin\standalone.bat script.

Build and Deploy the Quickstart

  1. Make sure WildFly server is started.

  2. Open a terminal and navigate to the root directory of this quickstart.

  3. Type the following command to build the quickstart.

    $ mvn clean package
  4. Type the following command to deploy the quickstart.

    $ mvn wildfly:deploy

This deploys the bmt/target/bmt.war to the running instance of the server.

You should see a message in the server log indicating that the archive deployed successfully.

Access the Application

The application will be running at the following URL: http://localhost:8080/bmt/.

You are presented with a simple form for adding key/value pairs, and a checkbox to indicate whether the updates should be executed using an unmanaged component. Effectively this will run the transaction and JPA updates in the servlet, not session beans. If the box is checked then the updates are executed within a session bean method.

  1. To list all pairs leave the Key input field empty.

  2. To add or update the value of a key, fill in the Key and Value input fields.

  3. Click the Submit button to see the results.

Server Log: Expected Warnings and Errors

You will see the following warnings in the server log. You can ignore these warnings.

WFLYJCA0091: -ds.xml file deployments are deprecated. Support may be removed in a future version.

HHH000431: Unable to determine H2 database version, certain features may not work

Run the Integration Tests

This quickstart includes integration tests, which are located under the src/test/ directory. The integration tests verify that the quickstart runs correctly when deployed on the server.

Follow these steps to run the integration tests.

  1. Make sure WildFly server is started.

  2. Make sure the quickstart is deployed.

  3. Type the following command to run the verify goal with the integration-testing profile activated.

    $ mvn verify -Pintegration-testing 

Undeploy the Quickstart

When you are finished testing the quickstart, follow these steps to undeploy the archive.

  1. Make sure WildFly server is started.

  2. Open a terminal and navigate to the root directory of this quickstart.

  3. Type this command to undeploy the archive:

    $ mvn wildfly:undeploy

Building and running the quickstart application with provisioned WildFly server

Instead of using a standard WildFly server distribution, you can alternatively provision a WildFly server to deploy and run the quickstart, by activating the Maven profile named provisioned-server when building the quickstart:

$ mvn clean package -Pprovisioned-server

The provisioned WildFly server, with the quickstart deployed, can then be found in the target/server directory, and its usage is similar to a standard server distribution, with the simplification that there is never the need to specify the server configuration to be started.

The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml:

        <profile>
            <id>provisioned-server</id>
            <build>
                <plugins>
                    <plugin>
                        <groupId>org.wildfly.plugins</groupId>
                        <artifactId>wildfly-maven-plugin</artifactId>
                        <configuration>
                            <feature-packs>
                                <feature-pack>
                                    <location>org.wildfly:wildfly-galleon-pack:${version.server}</location>
                                </feature-pack>
                            </feature-packs>
                            <layers>...</layers>
                            <!-- deploys the quickstart on root web context -->
                            <name>ROOT.war</name>
                        </configuration>
                        <executions>
                            <execution>
                                <goals>
                                    <goal>package</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    ...
                </plugins>
            </build>
        </profile>
Note

Since the plugin configuration above deploys quickstart on root web context of the provisioned server, the URL to access the application should not have the /bmt path segment after HOST:PORT.

Run the Integration Tests with a provisioned server

The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with a provisioned server.

Follow these steps to run the integration tests.

  1. Make sure the server is provisioned.

    $ mvn clean package -Pprovisioned-server
  2. Start the WildFly provisioned server, this time using the WildFly Maven Plugin, which is recommended for testing due to simpler automation. The path to the provisioned server should be specified using the jbossHome system property.

    $ mvn wildfly:start -DjbossHome=target/server 
  3. Type the following command to run the verify goal with the integration-testing profile activated, and specifying the quickstart’s URL using the server.host system property, which for a provisioned server by default is http://localhost:8080.

    $ mvn verify -Pintegration-testing -Dserver.host=http://localhost:8080 
  4. Shutdown the WildFly provisioned server, this time using the WildFly Maven Plugin too.

    $ mvn wildfly:shutdown

Building and running the quickstart application with OpenShift

Build the WildFly Source-to-Image (S2I) Quickstart to OpenShift with Helm Charts

On OpenShift, the S2I build with Apache Maven uses an openshift Maven profile to provision a WildFly server, deploy and run the quickstart in OpenShift environment.

The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml:

        <profile>
            <id>openshift</id>
            <build>
                <plugins>
                    <plugin>
                        <groupId>org.wildfly.plugins</groupId>
                        <artifactId>wildfly-maven-plugin</artifactId>
                        <configuration>
                            <feature-packs>
                                <feature-pack>
                                    <location>org.wildfly:wildfly-galleon-pack:${version.server}</location>
                                </feature-pack>
                                <feature-pack>
                                    <location>org.wildfly.cloud:wildfly-cloud-galleon-pack:${version.pack.cloud}</location>
                                </feature-pack>
                            </feature-packs>
                            <layers>...</layers>
                            <name>ROOT.war</name>
                        </configuration>
                        <executions>
                            <execution>
                                <goals>
                                    <goal>package</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    ...
                </plugins>
            </build>
        </profile>

You may note that unlike the provisioned-server profile it uses the cloud feature pack which enables a configuration tuned for OpenShift environment.

Getting Started with WildFly for OpenShift and Helm Charts

This section contains the basic instructions to build and deploy this quickstart to WildFly for OpenShift or WildFly for OpenShift Online using Helm Charts.

Prerequisites

  • You must be logged in OpenShift and have an oc client to connect to OpenShift

  • Helm must be installed to deploy the backend on OpenShift.

Once you have installed Helm, you need to add the repository that provides Helm Charts for WildFly.

$ helm repo add wildfly https://docs.wildfly.org/wildfly-charts/
"wildfly" has been added to your repositories
$ helm search repo wildfly
NAME                    CHART VERSION   APP VERSION     DESCRIPTION
wildfly/wildfly         ...             ...            Build and Deploy WildFly applications on OpenShift
wildfly/wildfly-common  ...             ...            A library chart for WildFly-based applications

Deploy the WildFly Source-to-Image (S2I) Quickstart to OpenShift with Helm Charts

Log in to your OpenShift instance using the oc login command. The backend will be built and deployed on OpenShift with a Helm Chart for WildFly.

Navigate to the root directory of this quickstart and run the following command:

$ helm install bmt -f charts/helm.yaml wildfly/wildfly --wait --timeout=10m0s
NAME: bmt
...
STATUS: deployed
REVISION: 1

This command will return once the application has successfully deployed. In case of a timeout, you can check the status of the application with the following command in another terminal:

oc get deployment bmt

The Helm Chart for this quickstart contains all the information to build an image from the source code using S2I on Java 17:

build:
  uri: https://github.com/wildfly/quickstart.git
  ref: main
  contextDir: bmt
deploy:
  replicas: 1

This will create a new deployment on OpenShift and deploy the application.

If you want to see all the configuration elements to customize your deployment you can use the following command:

$ helm show readme wildfly/wildfly

Get the URL of the route to the deployment.

$ oc get route bmt -o jsonpath="{.spec.host}"

Access the application in your web browser using the displayed URL.

Note

The Maven profile named openshift is used by the Helm chart to provision the server with the quickstart deployed on the root web context, and thus the application should be accessed with the URL without the /bmt path segment after HOST:PORT.

Run the Integration Tests with OpenShift

The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with the quickstart running on OpenShift.

Note

The integration tests expect a deployed application, so make sure you have deployed the quickstart on OpenShift before you begin.

Run the integration tests using the following command to run the verify goal with the integration-testing profile activated and the proper URL:

$ mvn verify -Pintegration-testing -Dserver.host=https://$(oc get route bmt --template='{{ .spec.host }}') 
Note

The tests are using SSL to connect to the quickstart running on OpenShift. So you need the certificates to be trusted by the machine the tests are run from.

Undeploy the WildFly Source-to-Image (S2I) Quickstart from OpenShift with Helm Charts

$ helm uninstall bmt