Skip to content

Commit

Permalink
Introduction of Happy Eyeballs Version 2 (RFC8305) in Socket.tcp (#9374)
Browse files Browse the repository at this point in the history
* Introduction of Happy Eyeballs Version 2 (RFC8305) in Socket.tcp

This is an implementation of Happy Eyeballs version 2 (RFC 8305) in Socket.tcp.

[Background]
Currently, `Socket.tcp` synchronously resolves names and makes connection attempts with `Addrinfo::foreach.`
This implementation has the following two problems.

1. In name resolution, the program stops until the DNS server responds to all DNS queries.
2. In a connection attempt, while an IP address is trying to connect to the destination host and is taking time, the program stops, and other resolved IP addresses cannot try to connect.

[Proposal]
"Happy Eyeballs" ([RFC 8305](https://datatracker.ietf.org/doc/html/rfc8305)) is an algorithm to solve this kind of problem. It avoids delays to the user whenever possible and also uses IPv6 preferentially.

I implemented it into `Socket.tcp` by using `Addrinfo.getaddrinfo` in each thread spawned per address family to resolve the hostname asynchronously, and using `Socket::connect_nonblock` to try to connect with multiple addrinfo in parallel.

[Outcome]

This change eliminates a fatal defect in the following cases.

Case 1. One of the A or AAAA DNS queries does not return

---
require 'socket'

class Addrinfo
  class << self
    # Current Socket.tcp depends on foreach
    def foreach(nodename, service, family=nil, socktype=nil, protocol=nil, flags=nil, timeout: nil, &block)
      getaddrinfo(nodename, service, Socket::AF_INET6, socktype, protocol, flags, timeout: timeout)
        .concat(getaddrinfo(nodename, service, Socket::AF_INET, socktype, protocol, flags, timeout: timeout))
        .each(&block)
    end

    def getaddrinfo(_, _, family, *_)
      case family
      when Socket::AF_INET6 then sleep
      when Socket::AF_INET then [Addrinfo.tcp("127.0.0.1", 4567)]
      end
    end
  end
end

Socket.tcp("localhost", 4567)
---

Because the current `Socket.tcp` cannot resolve IPv6 names, the program stops in this case. It cannot start to connect with IPv4 address.
Though `Socket.tcp` with HEv2 can promptly start a connection attempt with IPv4 address in this case.

 Case 2. Server does not promptly return ack for syn of either IPv4 / IPv6 address family

---
require 'socket'

fork do
  socket = Socket.new(Socket::AF_INET6, :STREAM)
  socket.setsockopt(:SOCKET, :REUSEADDR, true)
  socket.bind(Socket.pack_sockaddr_in(4567, '::1'))
  sleep
  socket.listen(1)
  connection, _ = socket.accept
  connection.close
  socket.close
end

fork do
  socket = Socket.new(Socket::AF_INET, :STREAM)
  socket.setsockopt(:SOCKET, :REUSEADDR, true)
  socket.bind(Socket.pack_sockaddr_in(4567, '127.0.0.1'))
  socket.listen(1)
  connection, _ = socket.accept
  connection.close
  socket.close
end

Socket.tcp("localhost", 4567)
---

The current `Socket.tcp` tries to connect serially, so when its first name resolves an IPv6 address and initiates a connection to an IPv6 server, this server does not return an ACK, and the program stops.
Though `Socket.tcp` with HEv2 starts to connect sequentially and in parallel so a connection can be established promptly at the socket that attempted to connect to the IPv4 server.

In exchange, the performance of `Socket.tcp` with HEv2 will be degraded.

---
100.times { Socket.tcp("www.ruby-lang.org", 80) }
---

This is due to the addition of the creation of IO objects, Thread objects, etc., and calls to `IO::select` in the implementation.

* Avoid NameError of Socket::EAI_ADDRFAMILY in MinGW

* Support Windows with SO_CONNECT_TIME

* Improve performance

I have additionally implemented the following patterns:

- If the host is single-stack, name resolution is performed in the main thread. This reduces the cost of creating threads.
- If an IP address is specified, name resolution is performed in the main thread. This also reduces the cost of creating threads.
- If only one IP address is resolved, connect is executed in blocking mode. This reduces the cost of calling IO::select.

Also, I have added a fast_fallback option for users who wish not to use HE.
Here are the results of each performance test.

```ruby
require 'socket'
require 'benchmark'

HOSTNAME = "www.ruby-lang.org"
PORT = 80

ai = Addrinfo.tcp(HOSTNAME, PORT)

Benchmark.bmbm do |x|
  x.report("Domain name") do
    30.times { Socket.tcp(HOSTNAME, PORT).close }
  end

  x.report("IP Address") do
    30.times { Socket.tcp(ai.ip_address, PORT).close }
  end

  x.report("fast_fallback: false") do
    30.times { Socket.tcp(HOSTNAME, PORT, fast_fallback: false).close }
  end
end
```

```
                           user     system      total        real
Domain name            0.015567   0.032511   0.048078 (  0.325284)
IP Address             0.004458   0.014219   0.018677 (  0.284361)
fast_fallback: false   0.005869   0.021511   0.027380 (  0.321891)
````

And this is the measurement result when executed in a single stack environment.

```
                           user     system      total        real
Domain name            0.007062   0.019276   0.026338 (  1.905775)
IP Address             0.004527   0.012176   0.016703 (  3.051192)
fast_fallback: false   0.005546   0.019426   0.024972 (  1.775798)
```

The following is the result of the run on Ruby 3.3.0.

(on Dual stack environment)

```
                 user     system      total        real
Ruby 3.3.0   0.007271   0.027410   0.034681 (  0.472510)
```

(on Single stack environment)

```
                 user     system      total        real
Ruby 3.3.0  0.005353   0.018898   0.024251 (  1.774535)
```

* Do not cache `Socket.ip_address_list`

As mentioned in the comment at #9374 (comment), caching Socket.ip_address_list does not follow changes in network configuration.
But if we stop caching, it becomes necessary to check every time `Socket.tcp` is called whether it's a single stack or not, which could further degrade performance in the case of a dual stack.
From this, I've changed the approach so that when a domain name is passed, it doesn't check whether it's a single stack or not and resolves names in parallel each time.

The performance measurement results are as follows.

require 'socket'
require 'benchmark'

HOSTNAME = "www.ruby-lang.org"
PORT = 80

ai = Addrinfo.tcp(HOSTNAME, PORT)

Benchmark.bmbm do |x|
  x.report("Domain name") do
    30.times { Socket.tcp(HOSTNAME, PORT).close }
  end

  x.report("IP Address") do
    30.times { Socket.tcp(ai.ip_address, PORT).close }
  end

  x.report("fast_fallback: false") do
    30.times { Socket.tcp(HOSTNAME, PORT, fast_fallback: false).close }
  end
end

                           user     system      total        real
Domain name            0.004085   0.011873   0.015958 (  0.330097)
IP Address             0.000993   0.004400   0.005393 (  0.257286)
fast_fallback: false   0.001348   0.008266   0.009614 (  0.298626)

* Wait forever if fallback addresses are unresolved, unless resolv_timeout

Changed from waiting only 3 seconds for name resolution when there is no fallback address available, to waiting as long as there is no resolv_timeout.
This is in accordance with the current `Socket.tcp` specification.

* Use exact pattern to match IPv6 address format for specify address family
  • Loading branch information
shioimm committed Feb 26, 2024
1 parent 616b414 commit 9ec342e
Show file tree
Hide file tree
Showing 5 changed files with 752 additions and 2 deletions.

0 comments on commit 9ec342e

Please sign in to comment.