Skip to content

Commit

Permalink
coverage: Eliminate BcbBranch
Browse files Browse the repository at this point in the history
`BcbBranch` represented an out-edge of a coverage graph node, but would
silently refer to a node instead in cases where that node only had one in-edge.

Instead we now refer to a graph edge as a `(from_bcb, to_bcb)` pair, or
sometimes as just one of those nodes when the other node is implied by the
surrounding context. The case of sole in-edges is handled by special code added
directly to `get_or_make_edge_counter_operand`.
  • Loading branch information
Zalathar committed Nov 19, 2023
1 parent 2570102 commit c41a60c
Show file tree
Hide file tree
Showing 2 changed files with 69 additions and 104 deletions.
134 changes: 69 additions & 65 deletions compiler/rustc_mir_transform/src/coverage/counters.rs
Original file line number Diff line number Diff line change
@@ -1,13 +1,11 @@
use super::graph;

use graph::{BasicCoverageBlock, BcbBranch, CoverageGraph, TraverseCoverageGraphWithLoops};

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::graph::WithNumNodes;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_middle::mir::coverage::*;

use super::graph::{BasicCoverageBlock, CoverageGraph, TraverseCoverageGraphWithLoops};

use std::fmt::{self, Debug};

/// The coverage counter or counter expression associated with a particular
Expand Down Expand Up @@ -259,49 +257,46 @@ impl<'a> MakeBcbCounters<'a> {
// We might also use its term later to compute one of the branch counters.
let from_bcb_operand = self.get_or_make_counter_operand(from_bcb);

let branches = self.bcb_branches(from_bcb);
let branch_target_bcbs = self.basic_coverage_blocks.successors[from_bcb].as_slice();

// If this node doesn't have multiple out-edges, or all of its out-edges
// already have counters, then we don't need to create edge counters.
let needs_branch_counters =
branches.len() > 1 && branches.iter().any(|branch| self.branch_has_no_counter(branch));
let needs_branch_counters = branch_target_bcbs.len() > 1
&& branch_target_bcbs
.iter()
.any(|&to_bcb| self.branch_has_no_counter(from_bcb, to_bcb));
if !needs_branch_counters {
return;
}

debug!(
"{from_bcb:?} has some branch(es) without counters:\n {}",
branches
branch_target_bcbs
.iter()
.map(|branch| { format!("{:?}: {:?}", branch, self.branch_counter(branch)) })
.map(|&to_bcb| {
format!("{from_bcb:?}->{to_bcb:?}: {:?}", self.branch_counter(from_bcb, to_bcb))
})
.collect::<Vec<_>>()
.join("\n "),
);

// Use the `traversal` state to decide if a subset of the branches exit a loop, making it
// likely that branch is executed less than branches that do not exit the same loop. In this
// case, any branch that does not exit the loop (and has not already been assigned a
// counter) should be counted by expression, if possible. (If a preferred expression branch
// is not selected based on the loop context, select any branch without an existing
// counter.)
let expression_branch = self.choose_preferred_expression_branch(traversal, &branches);
// Of the branch edges that don't have counters yet, one can be given an expression
// (computed from the other edges) instead of a dedicated counter.
let expression_to_bcb = self.choose_preferred_expression_branch(traversal, from_bcb);

// For each branch arm other than the one that was chosen to get an expression,
// ensure that it has a counter (existing counter/expression or a new counter),
// and accumulate the corresponding terms into a single sum term.
let sum_of_all_other_branches: BcbCounter = {
let _span = debug_span!("sum_of_all_other_branches", ?expression_branch).entered();
branches
.into_iter()
let _span = debug_span!("sum_of_all_other_branches", ?expression_to_bcb).entered();
branch_target_bcbs
.iter()
.copied()
// Skip the chosen branch, since we'll calculate it from the other branches.
.filter(|branch| branch != &expression_branch)
.fold(None, |accum, branch| {
let _span = debug_span!("branch", ?accum, ?branch).entered();
let branch_counter = if branch.is_only_path_to_target() {
self.get_or_make_counter_operand(branch.target_bcb)
} else {
self.get_or_make_edge_counter_operand(from_bcb, branch.target_bcb)
};
.filter(|&to_bcb| to_bcb != expression_to_bcb)
.fold(None, |accum, to_bcb| {
let _span = debug_span!("to_bcb", ?accum, ?to_bcb).entered();
let branch_counter = self.get_or_make_edge_counter_operand(from_bcb, to_bcb);
Some(self.coverage_counters.make_sum_expression(accum, branch_counter))
})
.expect("there must be at least one other branch")
Expand All @@ -311,22 +306,20 @@ impl<'a> MakeBcbCounters<'a> {
// by taking the count of the node we're branching from, and subtracting the
// sum of all the other branches.
debug!(
"Making an expression for the selected expression_branch: {:?} \
(expression_branch predecessors: {:?})",
expression_branch,
self.bcb_predecessors(expression_branch.target_bcb),
"Making an expression for the selected expression_branch: \
{expression_to_bcb:?} (expression_branch predecessors: {:?})",
self.bcb_predecessors(expression_to_bcb),
);
let expression = self.coverage_counters.make_expression(
from_bcb_operand,
Op::Subtract,
sum_of_all_other_branches,
);
debug!("{:?} gets an expression: {:?}", expression_branch, expression);
let bcb = expression_branch.target_bcb;
if expression_branch.is_only_path_to_target() {
self.coverage_counters.set_bcb_counter(bcb, expression);
debug!("{expression_to_bcb:?} gets an expression: {expression:?}");
if self.basic_coverage_blocks.bcb_has_multiple_in_edges(expression_to_bcb) {
self.coverage_counters.set_bcb_edge_counter(from_bcb, expression_to_bcb, expression);
} else {
self.coverage_counters.set_bcb_edge_counter(from_bcb, bcb, expression);
self.coverage_counters.set_bcb_counter(expression_to_bcb, expression);
}
}

Expand Down Expand Up @@ -383,10 +376,16 @@ impl<'a> MakeBcbCounters<'a> {
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> BcbCounter {
// If the target BCB has only one in-edge (i.e. this one), then create
// a node counter instead, since it will have the same value.
if !self.basic_coverage_blocks.bcb_has_multiple_in_edges(to_bcb) {
assert_eq!([from_bcb].as_slice(), self.basic_coverage_blocks.predecessors[to_bcb]);
return self.get_or_make_counter_operand(to_bcb);
}

// If the source BCB has only one successor (assumed to be the given target), an edge
// counter is unnecessary. Just get or make a counter for the source BCB.
let successors = self.bcb_successors(from_bcb).iter();
if successors.len() == 1 {
if self.bcb_successors(from_bcb).len() == 1 {
return self.get_or_make_counter_operand(from_bcb);
}

Expand All @@ -409,16 +408,19 @@ impl<'a> MakeBcbCounters<'a> {
fn choose_preferred_expression_branch(
&self,
traversal: &TraverseCoverageGraphWithLoops<'_>,
branches: &[BcbBranch],
) -> BcbBranch {
let good_reloop_branch = self.find_good_reloop_branch(traversal, &branches);
if let Some(reloop_branch) = good_reloop_branch {
assert!(self.branch_has_no_counter(&reloop_branch));
debug!("Selecting reloop branch {reloop_branch:?} to get an expression");
reloop_branch
from_bcb: BasicCoverageBlock,
) -> BasicCoverageBlock {
let good_reloop_branch = self.find_good_reloop_branch(traversal, from_bcb);
if let Some(reloop_target) = good_reloop_branch {
assert!(self.branch_has_no_counter(from_bcb, reloop_target));
debug!("Selecting reloop target {reloop_target:?} to get an expression");
reloop_target
} else {
let &branch_without_counter =
branches.iter().find(|&branch| self.branch_has_no_counter(branch)).expect(
let &branch_without_counter = self
.bcb_successors(from_bcb)
.iter()
.find(|&&to_bcb| self.branch_has_no_counter(from_bcb, to_bcb))
.expect(
"needs_branch_counters was `true` so there should be at least one \
branch",
);
Expand All @@ -439,26 +441,28 @@ impl<'a> MakeBcbCounters<'a> {
fn find_good_reloop_branch(
&self,
traversal: &TraverseCoverageGraphWithLoops<'_>,
branches: &[BcbBranch],
) -> Option<BcbBranch> {
from_bcb: BasicCoverageBlock,
) -> Option<BasicCoverageBlock> {
let branch_target_bcbs = self.bcb_successors(from_bcb);

// Consider each loop on the current traversal context stack, top-down.
for reloop_bcbs in traversal.reloop_bcbs_per_loop() {
let mut all_branches_exit_this_loop = true;

// Try to find a branch that doesn't exit this loop and doesn't
// already have a counter.
for &branch in branches {
for &branch_target_bcb in branch_target_bcbs {
// A branch is a reloop branch if it dominates any BCB that has
// an edge back to the loop header. (Other branches are exits.)
let is_reloop_branch = reloop_bcbs.iter().any(|&reloop_bcb| {
self.basic_coverage_blocks.dominates(branch.target_bcb, reloop_bcb)
self.basic_coverage_blocks.dominates(branch_target_bcb, reloop_bcb)
});

if is_reloop_branch {
all_branches_exit_this_loop = false;
if self.branch_has_no_counter(&branch) {
if self.branch_has_no_counter(from_bcb, branch_target_bcb) {
// We found a good branch to be given an expression.
return Some(branch);
return Some(branch_target_bcb);
}
// Keep looking for another reloop branch without a counter.
} else {
Expand Down Expand Up @@ -491,20 +495,20 @@ impl<'a> MakeBcbCounters<'a> {
}

#[inline]
fn bcb_branches(&self, from_bcb: BasicCoverageBlock) -> Vec<BcbBranch> {
self.bcb_successors(from_bcb)
.iter()
.map(|&to_bcb| BcbBranch::from_to(from_bcb, to_bcb, &self.basic_coverage_blocks))
.collect::<Vec<_>>()
}

fn branch_has_no_counter(&self, branch: &BcbBranch) -> bool {
self.branch_counter(branch).is_none()
fn branch_has_no_counter(
&self,
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> bool {
self.branch_counter(from_bcb, to_bcb).is_none()
}

fn branch_counter(&self, branch: &BcbBranch) -> Option<&BcbCounter> {
let to_bcb = branch.target_bcb;
if let Some(from_bcb) = branch.edge_from_bcb {
fn branch_counter(
&self,
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> Option<&BcbCounter> {
if self.basic_coverage_blocks.bcb_has_multiple_in_edges(to_bcb) {
self.coverage_counters.bcb_edge_counters.get(&(from_bcb, to_bcb))
} else {
self.coverage_counters.bcb_counters[to_bcb].as_ref()
Expand Down
39 changes: 0 additions & 39 deletions compiler/rustc_mir_transform/src/coverage/graph.rs
Original file line number Diff line number Diff line change
Expand Up @@ -332,45 +332,6 @@ impl BasicCoverageBlockData {
}
}

/// Represents a successor from a branching BasicCoverageBlock (such as the arms of a `SwitchInt`)
/// as either the successor BCB itself, if it has only one incoming edge, or the successor _plus_
/// the specific branching BCB, representing the edge between the two. The latter case
/// distinguishes this incoming edge from other incoming edges to the same `target_bcb`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub(super) struct BcbBranch {
pub edge_from_bcb: Option<BasicCoverageBlock>,
pub target_bcb: BasicCoverageBlock,
}

impl BcbBranch {
pub fn from_to(
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
basic_coverage_blocks: &CoverageGraph,
) -> Self {
let edge_from_bcb = if basic_coverage_blocks.bcb_has_multiple_in_edges(from_bcb) {
Some(from_bcb)
} else {
None
};
Self { edge_from_bcb, target_bcb: to_bcb }
}

pub fn is_only_path_to_target(&self) -> bool {
self.edge_from_bcb.is_none()
}
}

impl std::fmt::Debug for BcbBranch {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if let Some(from_bcb) = self.edge_from_bcb {
write!(fmt, "{:?}->{:?}", from_bcb, self.target_bcb)
} else {
write!(fmt, "{:?}", self.target_bcb)
}
}
}

// Returns the subset of a block's successors that are relevant to the coverage
// graph, i.e. those that do not represent unwinds or unreachable branches.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
Expand Down

0 comments on commit c41a60c

Please sign in to comment.