Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Restore pred_known_to_hold_modulo_regions #123578

Merged
merged 2 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
50 changes: 47 additions & 3 deletions compiler/rustc_trait_selection/src/traits/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -119,16 +119,60 @@ pub fn predicates_for_generics<'tcx>(

/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound.
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_bound_modulo_regions<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
def_id: DefId,
) -> bool {
let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]);
let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, trait_ref);
infcx.predicate_must_hold_modulo_regions(&obligation)
pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref)
}

/// FIXME(@lcnr): this function doesn't seem right and shouldn't exist?
///
/// Ping me on zulip if you want to use this method and need help with finding
/// an appropriate replacement.
#[instrument(level = "debug", skip(infcx, param_env, pred), ret)]
fn pred_known_to_hold_modulo_regions<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
pred: impl ToPredicate<'tcx>,
) -> bool {
let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred);

let result = infcx.evaluate_obligation_no_overflow(&obligation);
debug!(?result);

if result.must_apply_modulo_regions() {
true
} else if result.may_apply() {
// Sometimes obligations are ambiguous because the recursive evaluator
// is not smart enough, so we fall back to fulfillment when we're not certain
// that an obligation holds or not. Even still, we must make sure that
// the we do no inference in the process of checking this obligation.
let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
infcx.probe(|_| {
let ocx = ObligationCtxt::new(infcx);
ocx.register_obligation(obligation);

let errors = ocx.select_all_or_error();
match errors.as_slice() {
// Only known to hold if we did no inference.
[] => infcx.shallow_resolve(goal) == goal,

errors => {
debug!(?errors);
false
}
}
})
} else {
false
}
}

#[instrument(level = "debug", skip(tcx, elaborated_env))]
Expand Down
244 changes: 244 additions & 0 deletions tests/ui/traits/pred-known-to-hold-modulo-regions-unsized-tail.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
// This is a non-regression test for issues #108721 and its duplicate #123275 (hopefully, because
// the test is still convoluted and the ICE is fiddly).
//
// `pred_known_to_hold_modulo_regions` prevented "unexpected unsized tail" ICEs with warp/hyper but
// was unknowingly removed in #120463.

//@ build-pass: the ICE happened in codegen

use std::future::Future;
trait TryFuture: Future {
type Ok;
}
impl<F, T> TryFuture for F
where
F: ?Sized + Future<Output = Option<T>>,
{
type Ok = T;
}
trait Executor {}
struct Exec {}
trait HttpBody {
type Data;
}
trait ConnStreamExec<F> {}
impl<F> ConnStreamExec<F> for Exec where H2Stream<F>: Send {}
impl<E, F> ConnStreamExec<F> for E where E: Executor {}
struct H2Stream<F> {
_fut: F,
}
trait NewSvcExec<S, E, W: Watcher<S, E>> {
fn execute_new_svc(&mut self, _fut: NewSvcTask<S, E, W>) {
unimplemented!()
}
}
impl<S, E, W> NewSvcExec<S, E, W> for Exec where W: Watcher<S, E> {}
trait Watcher<S, E> {
type Future;
}
struct NoopWatcher;
impl<S, E> Watcher<S, E> for NoopWatcher
where
S: HttpService,
E: ConnStreamExec<S::Future>,
{
type Future = Option<<<S as HttpService>::ResBody as HttpBody>::Data>;
}
trait Service<Request> {
type Response;
type Future;
}
trait HttpService {
type ResBody: HttpBody;
type Future;
}
struct Body {}
impl HttpBody for Body {
type Data = String;
}
impl<S> HttpService for S
where
S: Service<(), Response = ()>,
{
type ResBody = Body;
type Future = S::Future;
}
trait MakeServiceRef<Target> {
type ResBody;
type Service: HttpService<ResBody = Self::ResBody>;
}
impl<T, Target, S, F> MakeServiceRef<Target> for T
where
T: for<'a> Service<&'a Target, Response = S, Future = F>,
S: HttpService,
{
type Service = S;
type ResBody = S::ResBody;
}
fn make_service_fn<F, Target, Ret>(_f: F) -> MakeServiceFn<F>
where
F: FnMut(&Target) -> Ret,
Ret: Future,
{
unimplemented!()
}
struct MakeServiceFn<F> {
_func: F,
}
impl<'t, F, Ret, Target, Svc> Service<&'t Target> for MakeServiceFn<F>
where
F: FnMut(&Target) -> Ret,
Ret: Future<Output = Option<Svc>>,
{
type Response = Svc;
type Future = Option<()>;
}
struct AddrIncoming {}
struct Server<I, S, E> {
_incoming: I,
_make_service: S,
_protocol: E,
}
impl<I, S, E, B> Server<I, S, E>
where
S: MakeServiceRef<(), ResBody = B>,
B: HttpBody,
E: ConnStreamExec<<S::Service as HttpService>::Future>,
E: NewSvcExec<S::Service, E, NoopWatcher>,
{
fn serve(&mut self) {
let fut = NewSvcTask::new();
self._protocol.execute_new_svc(fut);
}
}
fn serve<S>(_make_service: S) -> Server<AddrIncoming, S, Exec> {
unimplemented!()
}
struct NewSvcTask<S, E, W: Watcher<S, E>> {
_state: State<S, E, W>,
}
struct State<S, E, W: Watcher<S, E>> {
_fut: W::Future,
}
impl<S, E, W: Watcher<S, E>> NewSvcTask<S, E, W> {
fn new() -> Self {
unimplemented!()
}
}
trait Filter {
type Extract;
type Future;
fn map<F>(self, _fun: F) -> MapFilter<Self, F>
where
Self: Sized,
{
unimplemented!()
}
fn wrap_with<W>(self, _wrapper: W) -> W::Wrapped
where
Self: Sized,
W: Wrap<Self>,
{
unimplemented!()
}
}
fn service<F>(_filter: F) -> FilteredService<F>
where
F: Filter,
{
unimplemented!()
}
struct FilteredService<F> {
_filter: F,
}
impl<F> Service<()> for FilteredService<F>
where
F: Filter,
{
type Response = ();
type Future = FilteredFuture<F::Future>;
}
struct FilteredFuture<F> {
_fut: F,
}
struct MapFilter<T, F> {
_filter: T,
_func: F,
}
impl<T, F> Filter for MapFilter<T, F>
where
T: Filter,
F: Func<T::Extract>,
{
type Extract = F::Output;
type Future = MapFilterFuture<T, F>;
}
struct MapFilterFuture<T: Filter, F> {
_extract: T::Future,
_func: F,
}
trait Wrap<F> {
type Wrapped;
}
fn make_filter_fn<F, U>(_func: F) -> FilterFn<F>
where
F: Fn() -> U,
{
unimplemented!()
}
struct FilterFn<F> {
_func: F,
}
impl<F, U> Filter for FilterFn<F>
where
F: Fn() -> U,
U: TryFuture,
U::Ok: Send,
{
type Extract = U::Ok;
type Future = Option<U>;
}
fn trace<F>(_func: F) -> Trace<F>
where
F: Fn(),
{
unimplemented!()
}
struct Trace<F> {
_func: F,
}
impl<FN, F> Wrap<F> for Trace<FN> {
type Wrapped = WithTrace<FN, F>;
}
struct WithTrace<FN, F> {
_filter: F,
_trace: FN,
}
impl<FN, F> Filter for WithTrace<FN, F>
where
F: Filter,
{
type Extract = ();
type Future = (F::Future, fn(F::Extract));
}
trait Func<Args> {
type Output;
}
impl<F, R> Func<()> for F
where
F: Fn() -> R,
{
type Output = R;
}
fn main() {
let make_service = make_service_fn(|_| {
let tracer = trace(|| unimplemented!());
let filter = make_filter_fn(|| std::future::ready(Some(())))
.map(|| "Hello, world")
.wrap_with(tracer);
let svc = service(filter);
std::future::ready(Some(svc))
});
let mut server = serve(make_service);
server.serve();
}