Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs: clarify that certain intrinsics are not unsafe #86308

Merged
merged 1 commit into from
Jul 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions compiler/rustc_typeck/src/check/intrinsic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,10 @@ fn equate_intrinsic_type<'tcx>(
/// Returns `true` if the given intrinsic is unsafe to call or not.
pub fn intrinsic_operation_unsafety(intrinsic: Symbol) -> hir::Unsafety {
match intrinsic {
// When adding a new intrinsic to this list,
// it's usually worth updating that intrinsic's documentation
// to note that it's safe to call, since
// safe extern fns are otherwise unprecedented.
sym::abort
| sym::size_of
| sym::min_align_of
Expand Down
165 changes: 165 additions & 0 deletions library/core/src/intrinsics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -712,6 +712,11 @@ extern "rust-intrinsic" {

/// Aborts the execution of the process.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// A more user-friendly and stable version of this operation is
/// [`std::process::abort`](../../std/process/fn.abort.html).
pub fn abort() -> !;
Expand Down Expand Up @@ -745,6 +750,11 @@ extern "rust-intrinsic" {
///
/// Any use other than with `if` statements will probably not have an effect.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// This intrinsic does not have a stable counterpart.
#[rustc_const_unstable(feature = "const_likely", issue = "none")]
pub fn likely(b: bool) -> bool;
Expand All @@ -754,6 +764,11 @@ extern "rust-intrinsic" {
///
/// Any use other than with `if` statements will probably not have an effect.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// This intrinsic does not have a stable counterpart.
#[rustc_const_unstable(feature = "const_likely", issue = "none")]
pub fn unlikely(b: bool) -> bool;
Expand All @@ -765,6 +780,11 @@ extern "rust-intrinsic" {

/// The size of a type in bytes.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// More specifically, this is the offset in bytes between successive
/// items of the same type, including alignment padding.
///
Expand All @@ -774,6 +794,11 @@ extern "rust-intrinsic" {

/// The minimum alignment of a type.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is [`core::mem::align_of`].
#[rustc_const_stable(feature = "const_min_align_of", since = "1.40.0")]
pub fn min_align_of<T>() -> usize;
Expand All @@ -796,6 +821,11 @@ extern "rust-intrinsic" {

/// Gets a static string slice containing the name of a type.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is [`core::any::type_name`].
#[rustc_const_unstable(feature = "const_type_name", issue = "63084")]
pub fn type_name<T: ?Sized>() -> &'static str;
Expand All @@ -804,6 +834,11 @@ extern "rust-intrinsic" {
/// function will return the same value for a type regardless of whichever
/// crate it is invoked in.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is [`core::any::TypeId::of`].
#[rustc_const_unstable(feature = "const_type_id", issue = "77125")]
pub fn type_id<T: ?Sized + 'static>() -> u64;
Expand All @@ -829,6 +864,11 @@ extern "rust-intrinsic" {

/// Gets a reference to a static `Location` indicating where it was called.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// Consider using [`core::panic::Location::caller`] instead.
#[rustc_const_unstable(feature = "const_caller_location", issue = "76156")]
pub fn caller_location() -> &'static crate::panic::Location<'static>;
Expand All @@ -837,6 +877,11 @@ extern "rust-intrinsic" {
///
/// This exists solely for [`mem::forget_unsized`]; normal `forget` uses
/// `ManuallyDrop` instead.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
#[rustc_const_unstable(feature = "const_intrinsic_forget", issue = "none")]
pub fn forget<T: ?Sized>(_: T);

Expand Down Expand Up @@ -1090,6 +1135,11 @@ extern "rust-intrinsic" {
/// If the actual type neither requires drop glue nor implements
/// `Copy`, then the return value of this function is unspecified.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is [`mem::needs_drop`](crate::mem::needs_drop).
#[rustc_const_stable(feature = "const_needs_drop", since = "1.40.0")]
pub fn needs_drop<T>() -> bool;
Expand Down Expand Up @@ -1310,21 +1360,41 @@ extern "rust-intrinsic" {

/// Returns the minimum of two `f32` values.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is
/// [`f32::min`]
pub fn minnumf32(x: f32, y: f32) -> f32;
/// Returns the minimum of two `f64` values.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is
/// [`f64::min`]
pub fn minnumf64(x: f64, y: f64) -> f64;
/// Returns the maximum of two `f32` values.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is
/// [`f32::max`]
pub fn maxnumf32(x: f32, y: f32) -> f32;
/// Returns the maximum of two `f64` values.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is
/// [`f64::max`]
pub fn maxnumf64(x: f64, y: f64) -> f64;
Expand Down Expand Up @@ -1438,6 +1508,11 @@ extern "rust-intrinsic" {

/// Returns the number of bits set in an integer type `T`
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `count_ones` method. For example,
/// [`u32::count_ones`]
Expand All @@ -1446,6 +1521,11 @@ extern "rust-intrinsic" {

/// Returns the number of leading unset bits (zeroes) in an integer type `T`.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `leading_zeros` method. For example,
/// [`u32::leading_zeros`]
Expand Down Expand Up @@ -1497,6 +1577,11 @@ extern "rust-intrinsic" {

/// Returns the number of trailing unset bits (zeroes) in an integer type `T`.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `trailing_zeros` method. For example,
/// [`u32::trailing_zeros`]
Expand Down Expand Up @@ -1548,6 +1633,11 @@ extern "rust-intrinsic" {

/// Reverses the bytes in an integer type `T`.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `swap_bytes` method. For example,
/// [`u32::swap_bytes`]
Expand All @@ -1556,6 +1646,11 @@ extern "rust-intrinsic" {

/// Reverses the bits in an integer type `T`.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `reverse_bits` method. For example,
/// [`u32::reverse_bits`]
Expand All @@ -1564,6 +1659,11 @@ extern "rust-intrinsic" {

/// Performs checked integer addition.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `overflowing_add` method. For example,
/// [`u32::overflowing_add`]
Expand All @@ -1572,6 +1672,11 @@ extern "rust-intrinsic" {

/// Performs checked integer subtraction
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `overflowing_sub` method. For example,
/// [`u32::overflowing_sub`]
Expand All @@ -1580,6 +1685,11 @@ extern "rust-intrinsic" {

/// Performs checked integer multiplication
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `overflowing_mul` method. For example,
/// [`u32::overflowing_mul`]
Expand Down Expand Up @@ -1649,6 +1759,11 @@ extern "rust-intrinsic" {

/// Performs rotate left.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `rotate_left` method. For example,
/// [`u32::rotate_left`]
Expand All @@ -1657,6 +1772,11 @@ extern "rust-intrinsic" {

/// Performs rotate right.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `rotate_right` method. For example,
/// [`u32::rotate_right`]
Expand All @@ -1665,20 +1785,35 @@ extern "rust-intrinsic" {

/// Returns (a + b) mod 2<sup>N</sup>, where N is the width of T in bits.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `wrapping_add` method. For example,
/// [`u32::wrapping_add`]
#[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
pub fn wrapping_add<T: Copy>(a: T, b: T) -> T;
/// Returns (a - b) mod 2<sup>N</sup>, where N is the width of T in bits.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `wrapping_sub` method. For example,
/// [`u32::wrapping_sub`]
#[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
pub fn wrapping_sub<T: Copy>(a: T, b: T) -> T;
/// Returns (a * b) mod 2<sup>N</sup>, where N is the width of T in bits.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `wrapping_mul` method. For example,
/// [`u32::wrapping_mul`]
Expand All @@ -1687,13 +1822,23 @@ extern "rust-intrinsic" {

/// Computes `a + b`, saturating at numeric bounds.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `saturating_add` method. For example,
/// [`u32::saturating_add`]
#[rustc_const_stable(feature = "const_int_saturating", since = "1.40.0")]
pub fn saturating_add<T: Copy>(a: T, b: T) -> T;
/// Computes `a - b`, saturating at numeric bounds.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized versions of this intrinsic are available on the integer
/// primitives via the `saturating_sub` method. For example,
/// [`u32::saturating_sub`]
Expand All @@ -1703,13 +1848,23 @@ extern "rust-intrinsic" {
/// Returns the value of the discriminant for the variant in 'v';
/// if `T` has no discriminant, returns `0`.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The stabilized version of this intrinsic is [`core::mem::discriminant`].
#[rustc_const_unstable(feature = "const_discriminant", issue = "69821")]
pub fn discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant;

/// Returns the number of variants of the type `T` cast to a `usize`;
/// if `T` has no variants, returns `0`. Uninhabited variants will be counted.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
///
/// The to-be-stabilized version of this intrinsic is [`mem::variant_count`].
#[rustc_const_unstable(feature = "variant_count", issue = "73662")]
pub fn variant_count<T>() -> usize;
Expand All @@ -1732,10 +1887,20 @@ extern "rust-intrinsic" {
pub fn ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize;

/// See documentation of `<*const T>::guaranteed_eq` for details.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
pub fn ptr_guaranteed_eq<T>(ptr: *const T, other: *const T) -> bool;

/// See documentation of `<*const T>::guaranteed_ne` for details.
///
/// Note that, unlike most intrinsics, this is safe to call;
/// it does not require an `unsafe` block.
/// Therefore, implementations must not require the user to uphold
/// any safety invariants.
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
pub fn ptr_guaranteed_ne<T>(ptr: *const T, other: *const T) -> bool;

Expand Down