Skip to content

An implementation of a Model Predictive Control to drive the car around the track

License

Notifications You must be signed in to change notification settings

sbatururimi/model-predictive-control

Repository files navigation

Model Predictive Control

The description of the current implementation can be found in the write up here.

Dependencies

  • cmake >= 3.5

  • All OSes: click here for installation instructions

  • make >= 4.1(mac, linux), 3.81(Windows)

  • gcc/g++ >= 5.4

  • uWebSockets

    • Run either install-mac.sh or install-ubuntu.sh.
    • If you install from source, checkout to commit e94b6e1, i.e.
      git clone https://github.com/uWebSockets/uWebSockets
      cd uWebSockets
      git checkout e94b6e1
      
      Some function signatures have changed in v0.14.x. See this PR for more details.
  • Ipopt and CppAD: Please refer to this document for installation instructions.

  • Eigen. This is already part of the repo so you shouldn't have to worry about it.

  • Simulator. You can download these from the releases tab.

  • Not a dependency but read the DATA.md for a description of the data sent back from the simulator.

  • If you fail to install Ipopt on MacOs, try the following

brew install dartsim/dart/ipopt

Alternativelly

When testing and developing the project, I highly recommend to use a docker container as problem were reported when setting up IPOPT on Mac. You can find a ready to use settings file for the recommended docker container here.

Basic Build Instructions

  1. Clone this repo.
  2. Make a build directory: mkdir build && cd build
  3. Compile: cmake .. && make
  4. Run it: ./mpc.

Tips

  1. It's recommended to test the MPC on basic examples to see if your implementation behaves as desired. One possible example is the vehicle starting offset of a straight line (reference). If the MPC implementation is correct, after some number of timesteps (not too many) it should find and track the reference line.
  2. The lake_track_waypoints.csv file has the waypoints of the lake track. You could use this to fit polynomials and points and see of how well your model tracks curve. NOTE: This file might be not completely in sync with the simulator so your solution should NOT depend on it.
  3. For visualization this C++ matplotlib wrapper could be helpful.)
  4. VM Latency: Some have reported differences in behavior using VM's ostensibly a result of latency. Please let us know if issues arise as a result of a VM environment.

Editor Settings

We've purposefully kept editor configuration files out of this repo in order to keep it as simple and environment agnostic as possible. However, we recommend using the following settings:

  • indent using spaces
  • set tab width to 2 spaces (keeps the matrices in source code aligned)

Code Style

Please (do your best to) stick to Google's C++ style guide.

Call for IDE Profiles Pull Requests

Help your fellow students!

We decided to create Makefiles with cmake to keep this project as platform agnostic as possible. Similarly, we omitted IDE profiles in order to we ensure that students don't feel pressured to use one IDE or another. Bu you can find an xcode ide profile and explanation on how to set up and run the project here.

However! I'd love to help people get up and running with their IDEs of choice. If you've created a profile for an IDE that you think other students would appreciate, we'd love to have you add the requisite profile files and instructions to ide_profiles/. For example if you wanted to add a VS Code profile, you'd add:

  • /ide_profiles/vscode/.vscode
  • /ide_profiles/vscode/README.md

The README should explain what the profile does, how to take advantage of it, and how to install it.

Frankly, I've never been involved in a project with multiple IDE profiles before. I believe the best way to handle this would be to keep them out of the repo root to avoid clutter. My expectation is that most profiles will include instructions to copy files to a new location to get picked up by the IDE, but that's just a guess.

One last note here: regardless of the IDE used, every submitted project must still be compilable with cmake and make./

License

License: MIT

About

An implementation of a Model Predictive Control to drive the car around the track

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published