The Nak Machine Learning Library
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

Nak Build Status

Nak is a Scala/Java library for machine learning and related tasks, with a focus on having an easy to use API for some standard algorithms. It is formed from Breeze, Liblinear Java, and Scalabha. It is currently undergoing a pretty massive evolution, so be prepared for quite big changes in the API for this and probably several future versions.

We'd love to have some more contributors: if you are interested in helping out, please see the #helpwanted issues or suggest your own ideas.

What's inside

Nak currently provides implementations for k-means clustering and supervised learning with logistic regression and support vector machines. Other models and algorithms that were formerly in [breeze.learn] are now in Nak.

See the Nak wiki for (some preliminary and unfortunately sparse) documentation.

The latest stable release of Nak is 1.2.1. Changes from the previous release include:

  • breeze-learn pulled into Nak
  • K-means from breeze-learn and Nak merged.
  • Added locality sensitive hashing

See the CHANGELOG for changes in previous versions.

Using Nak


libraryDependencies += "org.scalanlp" % "nak" % "1.2.1"

In Maven:



Here's an example of how easy it is to train and evaluate a text classifier using Nak. See TwentyNewsGroups.scala for more details.

def main(args: Array[String]) {
  val newsgroupsDir = new File(args(0))
  implicit val isoCodec ="ISO-8859-1")
  val stopwords = Set("the","a","an","of","in","for","by","on")

  val trainDir = new File(newsgroupsDir, "20news-bydate-train")
  val trainingExamples = fromLabeledDirs(trainDir).toList
  val config = LiblinearConfig(cost=5.0)
  val featurizer = new BowFeaturizer(stopwords)
  val classifier = trainClassifier(config, featurizer, trainingExamples)

  val evalDir = new File(newsgroupsDir, "20news-bydate-test")
  val maxLabelNews = maxLabel(classifier.labels) _
  val comparisons = for (ex <- fromLabeledDirs(evalDir).toList) yield
    (ex.label, maxLabelNews(classifier.evalRaw(ex.features)), ex.features)
  val (goldLabels, predictions, inputs) = comparisons.unzip3
  println(ConfusionMatrix(goldLabels, predictions, inputs))

Questions or suggestions?

Post a message to the scalanlp-discuss mailing list or create an issue.