Skip to content
Sequential model-based optimization with a `scipy.optimize` interface
Branch: master
Clone or download
iaroslav-ai Merge pull request #755 from iaroslav-ai/master
Bump version numbers for new release
Latest commit af5450a Apr 22, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.circleci [MRG] Updates CircleCi to V2 (#714) Dec 2, 2018
benchmarks Updated Broken Link to list of functions (#747) Feb 19, 2019
build_tools
examples
media DOC: update media Aug 1, 2016
skopt Bump version numbers for new release Apr 21, 2019
.codecov.yml Ignore coverage of tests. Sep 1, 2016
.gitattributes Add versioneer support Jun 12, 2018
.gitignore adding ability to define Space parameters via yaml file Apr 5, 2018
.pep8speaks.yml Only comment on the lines a PR touches Nov 7, 2017
.travis.yml Reset PyPI password Jun 22, 2017
AUTHORS.md Add new contributors! Updated the change log a little (#365) Apr 21, 2017
CHANGELOG.md Bump version numbers for new release Apr 21, 2019
CONDUCT.md Minor spelling correction Jan 23, 2018
CONTRIBUTING.md Merge pull request #598 from betatim/code-of-conduct Jan 23, 2018
LICENSE.md
MANIFEST.in Add versioneer support Jun 12, 2018
README.rst Bump version numbers for new release Apr 21, 2019
postBuild
requirements.txt adding ability to define Space parameters via yaml file Apr 5, 2018
setup.cfg
setup.py Add versioneer support Jun 12, 2018
versioneer.py

README.rst

Logo

Travis Status CircleCI Status binder gitter Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Important links

Install

The latest released version of scikit-optimize is v0.6, which you can install with:

pip install scikit-optimize

This installs an essential version of scikit-optimize. To install scikit-optimize with plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will install matplotlib along with scikit-optimize.

In addition there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

The library is still experimental and under heavy development. Checkout the next milestone for the plans for the next release or look at some easy issues to get started contributing.

The development version can be installed through:

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize
pip install -e.

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Making a Release

The release procedure is almost completely automated. By tagging a new release travis will build all required packages and push them to PyPI. To make a release create a new issue and work through the following checklist:

  • update the version tag in setup.py
  • update the version tag in __init__.py
  • update the version tag mentioned in the README
  • check if the dependencies in setup.py are valid or need unpinning
  • check that the CHANGELOG.md is up to date
  • did the last build of master succeed?
  • create a new release
  • ping conda-forge

Before making a release we usually create a release candidate. If the next release is v0.X then the release candidate should be tagged v0.Xrc1 in setup.py and __init__.py. Mark a release candidate as a "pre-release" on GitHub when you tag it.

Commercial support

Feel free to get in touch if you need commercial support or would like to sponsor development. Resources go towards paying for additional work by seasoned engineers and researchers.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the "Made possible by" list.

You can’t perform that action at this time.